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ABSTRACT

The major problem that we investigate in this work is the extent to which
the full complexity of the Enfolding semi-group can be exhibited in a minimal
system. We feel that the investigation of the Enfolding semi-group structure of a
minimal system is a worthy one and interesting corresponding problems of a
purely semi-group theoretic nature. We consider minimal left ideals F of the
universal semi-group compactification SK of a topological semi-group K. We
derive several conditions, some involving minimal system, which are equivalent
to the ability to split g and #~ in this fashion, and then specialize to the case that
K = N, and the compactification is SN. We give an application of a product
discrete countable space of two-point with a specific system with several
conditions, some involving minimal systems, which are equivalent to ability to

splitting g and #~ in this way.



INTRODUCTION

In this thesis, we study properties in the theory of topological dynamical
system. A dynamical system most likely originated at the end of the 19th century
through the work of Henry Poincare in his study of celestial mechanics [3]. Mr.
Joseph Auslander has conducted a number of studies on Minimal flows and their
extensions see [1]. Many other study on automorphisms and equivalence relations
in topological dynamics be done by David B. Ellis and Robert Ellis see [5].
However, one can say that dynamical systems draws its theory and techniques
from many areas of mathematics, from analysis to geometry and topology, and
into algebra [22]. We study the dynamical system with the Stone-Cech
compactification of the set of natural number. This theory applied to get some
results and give one application. For a purpose, we need to define the concepts of
Enfolding semi-group. It proved to be a fundamental tool in the abstract theory
of topological dynamical system. Consider a K-system with compact phase space
X and K is asemi-group denoted by (K, X, @) where a: K X X — X is acontinuous
action of K on X, denoted by a(k,t) = k-t = a® (t) [6] and [25]. The system
(K, X) is called minimal system if the orbit Kx = {k-x:k € K } is Dense in X
for every x € X [17]. This equivalent to SK - x = X for every x € X for the
extended action [5]. We look to K-system of closed left ideal F where F is a
minimal left ideal of compact right topological semi-group H denoted by (K, F)
[22]. The major problem that we investigate is the extent of using the Enfolding
semi-group can exhibited in a minimal system. In particular, we consider the
question of whether SN can be the Enfolding semi-group of a minimal system.
We show that the Enfolding semi-group of F is homeomorphically isomorphic to
BN if and only if given g # 7~ in BN, there is some p in the smallest ideal of SN
withg - p =7 - p.



In chapter one, we introduce the suitable notation, give an exposition of
some of the elementary properties and the details of the construction. Plenty of
these properties be applied directly, and serve in what follows in coming chapters

and find some results.

Where we studied of the left (right) ideal, it is given as follows F (resp. R) left
and (right respectively) [12]. We look to the definition of the right topological
semi-group denoted by (K,.,7) where (K,-) is a semi-group, and (K, t) is a
topological space, and forall x € K, p,, : K — K is continuous where as p,, is a
right translation [2] and [11]. In addition, we study the concept of the filter and
ultra-filter and various types of filter [21]. Many properties are given and then
prove some of important properties. A filter u on a set K is principal if there is a
non-empty set X € K, such that uy ={A € K: X < A}, otherwise u is non-
principal. We will define a topology on the set of all ultra-filters on a set N,
denoted by SN = { g: ¢ is an ultra-filter on N} is the set of all ultra-filter on a set
N and establish some of the properties. We look to the algebraic structure on the
set of ultra-filter by defined the operation + on it define as follow: forany A € N
and n € Nwe defineA —n = {x € N:n + x € A} so for two ultra-filters p, g €
BN giventhen p + g = {A S Nln € NJ[A —n € g} € p} see [8] and [13].

In chapter two, we are going to do an enlargement inside the space SN
which is called stone-Cech compactification which is the technique for
constructing a universal map from a topological space N [23] and [24], this is the
largest compact space generated from the space. Where we have be proven the set
B, = {f[B]:B € ¢} has finite intersection property where f:N — W be
continuous function where W be a compact space. While the finite intersection
property is any sub collection family of sets we call this family satisfy finite
intersection property if the intersection of any finite number of elements of this
family is non-empty [8]. Moreover (e, SN) is the stone-Cech compactification of

N where e: N - BN. We define the Enfolding semi-group denoted by &£(T)



where X be a compact Hausdorff topological space as follows: if T = {f: X — X}
be a set of continuous function contained in X%, then the closure of a set T is the
Enfolding of T. In particular if (K, X, a) is a K-systems then the closure of the set
{a®: k € K} in XX denoted by (K, X) will referred to the Enfolding semi-group
of the K-systems. The Enfolding semi-group E(K,X)is a compact right-
topological semi-group. In addition, algebraic properties was given for this

concept [28].

In chapter three, we define the right M-stenography where M is a smallest
ideal of the semi-group K given as: if s # ¢ € K there is ¢ € M such that sq #
tg. In addition, the uuniformly recurrent and almost recurrent point was
discussing in this chapter such that, let (K, X, «) be a system a pointx € X is a
uniformly recurrent point if given any neighbourhood V of x, there is a finite
compact subset M of K such that given k € K, there ism € M with mkx € V [7]
and [9]. The uniformly recurrent points it will be exactly the points that are almost
recurrent for the system (N, X) when N is given with the discrete topology. For
our objective, we give an application by a particular example of a semi-group and
its compactification with a particular system. Let Y = {0,1 }" consisting of two
points discrete space and defined a shifting operator T:Y — Y by T(x)(n) =
y(n+ 1)wherex €Y.

\
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Chapter One: Fundamental Concepts with some Results

1.1 Introduction

In this chapter, we have given a basic information, which are useful in our
work. We defend the left (right) ideal on semi-group K this will lead us for the
smallest ideal M(K), which is the union of minimal left (or right) ideal. We
explore the concepts of a filter and ultra-filters, which will be used to define the

set SN for more information you can see [27]. In addition, several proofs.

1.2 Some Basic definitions and properties

Definition 1.2.1 [15]: A semi-group is a pair (K,*) where K is non-empty set

and * is a associative binary operation on K.

Formally a binary operation on K is a function *=: K X K — K such that the
operation is associative iff (p x q) *r =p x (q *r) forall p,gand r in K. Also

K is closed under * if p x g € K forany p,q € K.

Example 1.2.2: Each of the following is a semi-group
1- The set of natural numbers N under multiplication or addition is a semi-group.

2- (K,*) where K is a non-empty set where x xy = xoryforall x,y e Kisa

semi-group.

3- (N,v) such that p vV ¢ = max{p, q}, where p € N and q € N.
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Definition 1.2.3 [14]: Let K be a semi-group, and let 7, R and I be a non-empty
subset of K then:

1- Fisaleftideal of K ifandonly if @ # F € K and KF € F.
2-Risarightideal of K ifandonly if ® # R € K and RK € R.

3-Iisanideal of K if and only if I is a left ideal and right ideal of K.

Example 1.2.4 [20]:
1- Let K be a semi-group. If z is a zero in K then {z} is an ideal in K.

2- In the commutative semi-group (N, +), the ideals are the sets [a, ) =

{n € N : a < n}, where a is an arbitrary element of N.

Definition 1.2.5 [14]: Let K be a semi-group, R is a right ideal of K, and F
left ideal of K. Then

1- F is a minimal left ideal of K if and only if F is a left ideal of K and

whenever J is a leftideal of Kand ] € Fonehas] = F.

2- R is a minimal right ideal of K if and only if R is a right ideal of K and

whenever J isaright ideal of Kand J € Ronehas] = R.
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Example 1.2.6 [20]:

1- A Semi-groups with a zero has only one minimal left (right two-sided) ideal

of K namely the trivial one {0}.

2- The integer numbers with addition (Z, +) has no trivial minimal ideal.

The next Lemma can, be found in [11] as a problem, and will be given a

proof for that.
Lemma 1.2.7 [11]: Let K be a semi-group.

1- Let F and L be left ideals of K. Then F N L is a left ideal of K if and only
ifFNL=+0.
2- Let R be aright ideal of K and let F be a left ideal of K. Then R n F # @.

Proof:

1- Suppose that F N L is a left ideal immediately by definition of left ideal we
get F N L + @. Conversely, suppose F N L + @.

To show F N L left ideal we need to showK(FNL) S FNL. Let x €
K(FNL),sox=kywhere ke Kandy € F n L. But F and L are left ideal
thenky € Fand ky € L, but ky = x hancex € F n L.

2-Letx € Rand y € F then xy € R and xy € L by definition (1.2.3).

Lemma 1.2.8 [11]: Let K be a semi-group and let £ € K. Then K% is a left ideal,
£K is aright ideal and K£K is an ideal.

Proof: See the proof of Lemma (1.30 part a) in [11].

E
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Theorem 1.2.9 [20]: Let K be a semi-group.
1- If F is aleft ideal of K and x € F, then Kx € F.

2-Let® #= F € K. Then F is a minimal left ideal of K if and only if for each x €
F implies Kx = F.

Proof:
For part 1: This follows immediately from the definition of left ideal.

For part 2: Assume that F is a minimal left ideal of K and x € F. By Lemma
(1.2.8) Kx isaleftideal and Kx < F by part (1) above. Since F is minimal left

ideal, hence Kx = F.

Conversely, Suppose F is a left ideal. Let L be a left ideal of K with L € F. Pick
x € L. Then by part (1) above, Kx € Landso LS F = Kx € L.Hence Fisa

minimal.

Theorem 1.2.10 [11]: Let F be a minimal left ideal of the semi-group K, and let
J € K. Then]isaminimal left ideal of K if and only if there is some £ € K such
that ] = Ft.

Proof:

Assume J is a minimal left ideal of K and pick £ € J. Since KFt < F# and
Ft € K] € ] then Fz is left ideal of K in J. But, J is minimal and so Ft = J.
Conversely, let £ € K clearly Ft € F and a left ideal of K. But F is a minimal
left ideal, so F£ = F. Thus, F# is a minimal left ideal implies J is a minimal left

ideal.

LR
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Corollary 1.2.11 [20]: Let K be a semi-group. If K has a minimal left ideal, then

every left ideal of K contains a minimal left ideal.
Proof:

Let F be a minimal left ideal of K and let L be a left ideal of K. Pick x € L. Then

by Theorem (1.2.10), Fx is a minimal left ideal which is contained in L.

Remark 1.2.12: We will denote of the smallest ideal set in the semi-group K

by M(K) which is the set contained in every ideal in K.

Theorem 1.2.13 [11]: Let K be a semi-group. If K has a minimal left ideal, then
M(K) existsand M(K) = U {F : F is a minimal left ideal of K}.

Proof:

Let H = U {F: F is a minimal left ideal of K}. First we need to show that # is
a minimal ideal. Let F € H be a minimal left ideal and let I be any ideal of K.
By Lemma (1.2.7)part (2),F N I # @.Letse Fnland£ € K, implieszs €
FNI. .SoFn Iisa leftideal and a subset of minimal left ideal F. Therefore
FnI=ZF.SinceF < I hence H < I, which implies that H is the smallest. It
suffices to show that 7 is an ideal of K. Note that /' # @ by assumption. Let
s € H and pick a minimal left ideal F such that s € . Then ts € F € H, for
all £ € K. Hence H is left ideal. By Theorem (1.2.10), F# is a minimal left ideal
of K,so Ft < H while st € Ft.
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The next Lemma can, be found in [11] as a problem, and will be given a

proof for that.
Lemma 1.2.14 [11]: Let K be a semi-group.

1- Let F be a left ideal of K. Then F is minimal if and only if F£ = F for every
teF.

2- Let J be an ideal of K. Then J is the smallest ideal if and only if J£] =] for
eacht €.

Proof:

1- If F is a minimal and # € F, then F# is a left ideal of K and Ft € F, so
Ft = F.Now assume Ft = F forevery £ € F and let L be a left ideal of K with
LEF.PickteL ThenF =FtSFLESLCF.

2- Suppose J is smallest ideal then ] =U {minimal left ideals}. Since J is an
ideal, ¢ € J, then J£] < ] by definition of ideal. Since J is smallest ideal then ] €
Jt], hence J£] = J. Conversely, suppose that J£] = ], for each £ € J, to show J
is the smallest ideal. Let I be an ideal of K suchthat/ € J. Let# € I, thenis ¢ €
Jimplies] =J#J € JI] €1 < J, and hence ] = J£] is a minimal ideal. To show
J is smallest ideal. Let I be an ideal of K to show J € I. Note that I n ] + @, let
a€l,be],thisisabe€land ab €]. To show J NI is an ideal, let x € ] n
It eK

= tx € Jand tx € I, hence J N I is left ideal.
Similarly, J n I isright ideal. ThisleadsJ NI < J,1
=>/Nnl=]
=>JCl

Hence J is the smallest ideal.

LR
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Theorem 1.2.15 [11]: Let K be a semigroup. If F is a minimal left ideal of K
and R is a minimal right ideal of K, then M(K) = FR.

Proof:

Clearly FR is an ideal of K. By Lemma (1.2.14 part 2), we need to show that
M(K) = FR. So, let y e FR. Then FRyF is a left ideal of K which is
contained in F. So FRyF = F and hence FRyFR = FR since F is minimal
left ideal.

Theorem 1.2.16 [11]: Let K be a semi-group and assume that there is a minimal
left ideal of K which has an idempotent. Then every minimal left ideal has an

idempotent.

Proof: See the proof of Theorem (1.56) in [11].

Definition 1.2.17 [18]: Let K be a semi-group and x, y € K we define the left (

resp. right) translations on a function 1,: K — K (resp. p,: K — K) as
follows: 1,.(y) = xy (resp. p,.(y) = yx).
Definitions 1.2.18 [11]:

1- The triple (K, ., t) is called right topological semi-group where (K,-) is a
semi-group, and (K, t) is a topological space, if forall x e K, p,: K = K is

continuous.

2- The triple (K,., ) is called left topological Semi-group where (K,-) is a
semi-group, and (K, 7) is a topological space, if forall x e K, 1, : K - K is

continuous

3- If the triple (K, ., ) is a right topological semi-group and a left topological

semi-group then (K, ., ) is a semi topological semi-group.

TE
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4- The triple (K, ., t) is topological semi-group where (K,-) is a semi-group,

and (K, 7) is a topological space, if -: K X K — K is continuous.

Definition 1.2.19 [11]: We define the topological center of the semi-group
K denoted by A(K) which is define as follows: A(K)={x€K:4, is

continuous}, where K be a right topological semi-group.

Note 1.2.20: The center A(K) is itself a semi-subgroup of K. Moreover
A(K) = K if and only if K is semi-topological semi-group.

Definition 1.2.21 [18]: A topological space Xis Hausdorff (T,-spaces) if for
every x,y € Xwithx # y,there exist disjoint open subsets U, V of X such that
x € Uandy € V.

Zorn’s Lemma 1.2.22 [5]:If (K, <) is a partially ordered set such that any
increasing chain k; <--- <k; <-- has a supremum in K, then K itself has a

maximal element.

The next theorem it is a fundamental important theorem that is related the

compact right topological semi-group corresponding with the idempotent.

Theorem 1.2.23 [11]: Let K be a Hausdorff compact right topological semi-

group. Then K contains at least one idempotent.
Proof:

Definetheset W ={Y C K:Y # @, Y iscompactand Y - Y < Y} which is the
set of compact sub semi-groups of K. Notethat K € W ,So W # @. Let J bea
chain in W. Since K is a Hausdorff consequently 7 is a collection of closed
subsets from the compact space K. Hence, it has finite intersection property. So

N J # @ which is trivially compact and semi-group.
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Implies N J € W. So by Zorn’s Lemma W has a minimal member say B. We

need to show B is one member of W.

Let A = Bbwhere b € B then A # @. Since A = p,[B], then A is the continuous

image of a compact space, hence it is compact.

Also AA = BbBb € BBBb € Bb = A, thus A € W. Since A=Bb € BB <
B and B is minimal of W, so A = B. Let C = {x € B:xb = b}. Note that b €
B = Bb, then C # @. Also, since C = B n p ;' [{b}], so C is closed and implies
its compact. Now given x,c € C one get xc € BB € Bandxcb = xb =
bsoxc € C. Thus C € W. Since C € B and B is minimal, Then C = B,sob €
C and so bb = b.

Corollary 1.2.24 [11]: If K be a compact right topological semi-group. Then K
has a minimal left ideal. More generally all-minimal left ideals in K will be

closed and have an idempotent.
Proof:

Suppose F be a left ideal of K and let x € F. Since we have Hausdorff space,
then Kx = p,(K) is a closed compact left ideal in F. It follows any minimal
left ideal is closed. By using the proof of Theorem (1.2.23), we have that any
minimal left ideal has an idempotent. To complete the proof, we need to show
that this satisfying for any left ideal of K contains a minimal left ideal. Let F be
a left ideal of K and consider aset H = {Y:Y isaclosed left ideal of K and Y €
F} which is partially ordered by inclusion. Note H + @ since at least we have a
left ideal Kx. Applying Zorn’s Lemma, H has a minimal left ideals L. Since L
Is @ minimal among these left closed ideals in F, also since every left ideal

contains a closed left ideal. Therefore L is a minimal left ideal.

¥
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1.3 A Filter and an Ultra-filter

Definition 1.3.1 [26]: Let K be any set, a filter on a set K is a non-empty set u

with the following properties:

1-0 & pu.
2-1fP,qg € uthen®P n g € pu.
3-fPeuandP € g € Ktheng € pu.

Example 1.3.2: Consider the set u to be a neighborhood of a pointa in a

topological space X. Then u is a filter.

1- It's clearly that for any neighborhood of a point a say ¢ = (a—€,a+€) we
have @ & .

2-Letg = [a—%,a+§],?= [a—%,a+§] € u then
gnNP = [a—%,a+§]e;1.
3-Take g = [a—%,a+§] Eu,and P = [a—%,a+§] be a neighborhood for

some point b, such that [a—%,a+§] c [a—%,a+§] C K then [a—g,a+

e

Remarks 1.3.3 [4]:

1- The union of two filters on a set need not be a filter, for the counter example
see example (2.1.4) (ii) in [4].

2- The intersection of all filters on K is the filter {K} which is the weakest filter
on K.
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In the next following definition, we will introduce another important type of
filter.

Definition 1.3.4 [26]: A filter u on a set K is called an ultra-filter if it is not

properly contained in any other filter on K.

Note 1.3.5 [8]: A filter u on K is an ultra-filter if and only if for every A € K
either A € u or A€ € .

We record immediately the following very simple but also very useful fact

about ultra-filters.

Example 1.3.6: 5: Let K = {a, b, c}

m = {K}, up = {{a, b}, K}, us = {{b, c}, K}, s = {{c, a}, K},
us = {{a}, {a, b}, {a,c}, K}, us = {{a, b}, {b, c}, K},

w7 = {{b},{a, b}, {b, c}, K3, us = {{c},{c, a}, {b, c}, K}

The filter us, u; and ug are an ultrafilter on K = {a, b, c} since there are no filter

on K stecictly fine than us, u, and ug.

Remark 1.3.7 [11]: Let K be a set and let u and v be two ultra-filters on K. Then
u=v ifandonlyifu € v.

Remark 1.3.8: Let K be a non-empty set and u be a filter on K then by definition
for every g € K either g € uor K\g € pu.

L
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Definition 1.3.9 [26]: A filter u on a set K is principal if there is a non-empty
setX € K,suchthatuy = {A € K:X < A}. Otherwise, u is a non-principal.

Remark 1.3.10 [11]: Every ultra-filter on a finite set K is principal. Moreover,

no principal ultra-filter is any ultra-filter on infinite set.

1.4 Topological Space on set SN

In this section, we will define a topology on the set of ultra-filters on a special
case for the set of natural number N and establish some of the properties. This

will lead us to define the stone-Cech compactification space on N.

Definition 1.4.1: Let N be a discrete topological space of natural number N. We
define the set of BN = { g: ¢ is an ultra-filter on N} that is the set of all ultra-

filters on a set N.

We will define a topology on the set of SN by describing a base explicitly and

we shall be thinking of the ultra-filters as a point in this topology space SN.
Definition 1.4.2: Let N be a discrete topological space we define the set.

1- For any M subset of N, M = {g € BN: M € g}, where g is an ultra-filter

on N.

2-Letm € N, thene(m) ={M € N,m € M'}.

ToE
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Lemma 1.4.3: For each m € N, e(m) is the principal ultra-filter corresponding

to m on the other word all ultra-filters generated from N are principal.
Proof:
First we need to show e(m) is itself a filter.

1- Let H, B € e(m), then by definition of e(im) above there ism € H and B €
H then H N B # Q.

2- Let H € e(m) and B be any set suchthat H € B < N. Thenm € H € B.
Immediately by the Definition (1.4.2) B € e(m).

3- By definition of e(m), we have @ & e(m).

Hence e(m) is a filter, and by the Definition (1.4.2) m € H € e(m) thenm ¢
HEC implies H°C & e(m). Subsequently e(m) is ultra-filter by Note (1.3.5),

which is a principle.

In the next proposition, we illustrate some properties of the set we define above.

Proposition 1.4.4 [10]: For any two sets M € N and B € N. M and B have the

following properties which are holds:
1- M = @ ifand only if M = @.
2- M € Bifandonly if M € B.
3-MNB=Mn3B.

4-MUB =M UB.

5- M€ = (M ).

6-(N/M)=pN/M.

ToE
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Proof:

1- Assume M # @, there exists m € M. So e(m) is a principle ultra-filter, leads

to M € e(m) this mean M # @, a contradiction.
Conversely, suppose M = @. Since @ & g, for any ultra-filter, so M = @.

2- If M’ € B, then for g € M, implies by definition M € g, so B € g. Hence
g € B,soM € B.

Conversely, let M € B, and suppose M’ & B. Define M* = M'\B # @. Choose
some an ultra-filter g such that M* € g. Because M* € M, then M € g.
Therefore g € M, which implies ¢ € B, and hence B € ¢. But® = M* N B €

g, a contradiction.

3- Let ¢ € M Nn'B, where g is an ultra-filter and therefor M N B € g, which is
equivalent M € g and B € g. So by definition g € M and g € B, this leads to
be g € M n B. HenceM N'B € M n B. For the other direction, suppose g €
M N B, soq €M and g € B, so by definition M € g and B € g. Implies that
MNBEegandsog € M NB.Hence M N B € M N B. Therefore M N B =
M NnB.

4- Let g € M UB, where g is an ultra-filter and so M U B € g. Suppose
M,B €& g,s0 M° € gand B¢ € g this implies M n B¢ € g.

Therefore M UB)NMNB =(MUB)N(MUB)Eg

That is a contradiction. Hence M UB € M U B. Other direction, let g € M U

B, then ¢ € M or g € B. Suppose ¢ € M, M € g.
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Since M' € M U B € N, by definition of filter M UB € g, s0o ¢ € M UB.
Similarly, if g € B. Hence M UB = M U B.

5- For g € M€, so M€ € g and hence M & g. This mean ¢ € (M )and so
e < ()°. Now for g € (M)°, g ¢ M. This mean M & g S0 M€ € g. So

g € M€ and (M)° < <. Therefore M< = (M )".

6- Note (N/ M) = {g € BN: M€ € g}, this leads to M & ¢ and so ¢ € M
implies ¢ € BN/M . Conversely, letg € SN/M = {g € BN: M & g}.So M ¢
¢ implies that M€ € g, then ¢ € (N / M).

Theorem 1.4.5 [11]: Let D be a discrete set and let A be a subset of P(D) which
has the finite intersection property. Then there is an ultra-filter u on D such that

A C pu.

The next theorem it’s in [11] but we will reprove it for our purpose in special

case with the discrete set of natural numbers.

Theorem 1.4.6: Let N a set of natural numbers, then SN is a compact Hausdorff

space.
Proof:

Suppose that P and g be two distinct ultra-filter elements of gN. If M’ € P\g
then M'¢ = N\M € g. Then M and N / M are disjoint open sets subsets of SN
containing P and g respectively. Hence, BN is Hausdorff space. Now, for
compactness of SN we need to show that every collection of closed sets of N

satisfies the finite intersection property has non- empty intersection.

ToE
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Note that the set of the form M is the stone set M which acts as both an open

and closed sets bases because (N / M) = BN / M.

To prove BN is a compact we will show that the family £ = {the stone set M
with finite intersection property} has non-empty intersection. Let B = {M <
N:M € H}.IfF € ppgy ={F:0 # F; € B,i = 1,2,...,n, and F is finite}, this
mean for each M; € F;, M; € H.

From definition of # there is some P €N,.cr M, and by definition of M we
getn F; € P. Thus N F; # @ and hence B has finite intersection property. So by
Theorem (1.4.5) there is an ultra-filter g € SN suchthatB € g,andsog en H.

Therefore SN is compact.

Lemma 1.4.7 [11]: The set of the form M are the clopen subset of SN.
Proof:

Based on the previous theorem, we say M is a base of open and closed set in
BN, so M is clopen. We will try to show that any clopen subset of SN belongs
to this kind of family. Let B be any clopen subset of SN. Let H = {M: M <
N and M < B}. Since His a collection of a basis of an open set M, so 7 is open
cover of B, but B is closed subset of a compact space SN. Therefore, B is a
compact. Pick a finite subfamily J of N such that B =U;¢ 4 M, so by using

Proposition (1.4.4 part 4) we have B =U M.
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Theorem 1.4.8: A map e: N — BN where e is a one to one and e[N] is a dense

subset of SN which its points are precisely the isolated points of SN,
Proof:

Leta # b € N, so b & {a} implies {a} & e(b), but, e(b) is an ultra-filter then
{a}¢ = N\ {a} € e(b)\e(a). Hence e(a) # e(b). Therefore, e is one to one.

To show e[N] is a dense subset on SN. We need to show e[N] has its point and
its limit point of e[N]. So we will try to show if P is a point in SN is a limit point
of e[N] if every neighborhood of P contains at last one point of e[N] different
from P itself. Let M be a basic open subset of SN, by definition of M then
M # @. Note that any a € M satisfy e(a) € e[N]Nn M and so e[N]N M # @

which mean e[N] has its limit point. Hence e[N] is a dense in SN.

Finally, to show the points of SN are isolated. Note for any a € N, e(a) is
isolated in BN because {e(a)} = {a} is an open subset of SN whose only

member is e(a). Then by definition of isolated then e(a) is an isolated point.

The following definition is defined an operation on the set SN that give the

algebraic structure for our study.

Definition 1.4.9 [20]: Let (N, +) is a semi-group, forany B € N and m € N we
define B—m = {x € N:m + x € B}. For any two ultra-filters P and g we

define their sum by:

P+g={BSN[{meN:B—megq}eP}

ToE
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Example 1.4.10: Consider the two principle ultra-filters P (m,) and P(m,), we

Solution:

For any B € P(m,) + P(m,), since{m € N: B —m € P(m,)} € P(m,) by
definitionm, € {m € N: B—m € P(m,)}, since B— m, € P(m,) leads to

mz E B - ml. Hence, ml +m2 E B SO, B E:])(ml +m2)

The other direction B € P (m, + m,) by definition m; + m, € B. We getm, €
B — m,;.S0, B— m; € P(m,). This leads to havem; e {m e N:B—-m €
P(m,)}, then {meN:B—m € P(m,)} € P(m,). Hence, B € P(my) +
P(m,).

Lemma 1.4.11: The operation + that is defined on SN is a binary operation as

well as associative.
Proof:

Let P and g € BN. First, we need to show P + g € BN. By showing P + g is
an ultra-filter. It is clear that by definition @ ¢ (P 4+ ¢) and N € (P + g).
Suppose A, BE(P+qg). ThenANB—mePiff A—mePand B—mée
P. Therefore, {(mMeN:(ANB—-m)eP}={meN:A-meP}n{me
N:B—me®P}. But AB€EP+g, so {meN:A—meP}eg and {m €
N:B—-meP}eg,weget{meN:(ANB—m)eP}egandANBEP +
g. SupposeA€eP +gand ACCCS N. Then A—m S C—m for all m € N.
SoA-meP implies C—meP. Thus {meN:A—-meP}c{me
N:C—meP}land{m € N:C —m € P} € g. Therefore C € P + g. We want
to show that P + g is an ultra-filter, let A € NwithA ¢ P + g.
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Thus,{ meN:A—meP}égandso{meN:A—m ¢& P} € g. So we will
get {(meN:A—meP}={meN:(A-m)¥eP}={meN:A—mEe
P3¢ € g. Therefor, A° € P + g. This shows that P + ¢ is an ultra-filter.

Now, for associative part for our operation.

Let ACSN. ThenA e P+ (g+r)iff{m eN:(A—m) € P}e g+ and
for more clarity iff {n e N:({m e N:(A—m)e P}-n} € g} €. Note
meNA-meP}-n=m—-—n:(A—m) €P}

=fmeN:(A—n)—m)e P}.

So,Ae P+(g+r) @o@{neN:((A—n)—m)ePlegleriff{ine
N:(A—n)eP+qgleriffAe(P+qg)+r.

Theorem 1.4.12: For any P € BN, the map 3p: BN — BN that is given by
dp(qg ) = P + g is continuous.

Proof:
We show that the inverse image of a basic open set is open. Indeed,
3p 1 (M) = {q € BN:3p(g) € M}
={g:P+qeEM}
={g:MeP+gq;}
={g:{n: M—n € P} € g}
={n: M- n € P}.

Therefore, that 3, is continuous.
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Lemma 1.4.13 [8]: (Idempotent lemma) There is element P € SN with P +
P=27.

Proof:

Suppose that B be the set of compact semi-groups which are contained in SN
.Because SN € B is non-empty. By inclusion, it is partially ordered. Every chain
A has N 1A as a non-empty lower bound (it is compact and non-empty since
all the A’s are compact and it is easy to be a semi-group). By Zorn's lemma we

have a minimal compact semi-group L. We claim that any P € L is idempotent.

We first observe that L + 2 is a compact (by left continuity of addition semi-
group). If P, + P and P, + P are elements of L + P then so is (P, + P) +
P, +P)=(P,+P+P,)+q. SinceL+P L we have L +P =L by
minimality. Now set C={ g € L: ¢ + P =P } because L = L + P, C is non-
empty. It is compact by continuity also it is a semi-group: g, + P = Pand g, +
P =P imply (g, + g,) + P =P, since C € L by minimality of L, in fact C =
LsoPeCandP +P =2P.
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2.1 Introduction

In this chapter we briefly study the stone-Cech compactification, which
is the largest compact space generated from the space. We will define it in the
case of the set of natural numbers N, and which is denoted by SN. That is, SN is
the set of all ultra-filters on N. The algebraic and topological properties of SN
will be used to understand and study the dynamical behavior of the system and
present several of its applications. In addition, we introduce the concept of
Enfolding semi-group and its theory, which we use it in the theory of
topological dynamics. It reflects various properties of a dynamical system. We
give some properties concerning its structure. We describe the connections
between the algebraic and topological properties of the Enfolding semi-group
and various properties. In addition, we introduce the concepts of K-system and

theoretical properties related to them.

2.2 Stone-Cech compactification BN

Definition 2.2.1[19]: The stone-Cech Compactification of Discrete topological
space DD is a pair (¢, Y) such that:

1) Y is a compact space.
2) D Embedding into Y by ¢.

3) ¢[D] is dense in Y, and
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4) Given any compact space W and any continuous function f: D — W there is

a continuous function g: Y — W suchthat go ¢ = f.
Y
D ;oW

1) Any two Stone-Cech Compactifications of the same topological space I are

Remark 2.2.2[19]:

homeomorphism.

2) The topology induced on D as a subset of Y is the original topology of D.

Note 2.2.3: We will concentrate our work on a special case when D = N, and
next theorem shows that SN is the stone-Cech compactification corresponding
to N.

The next proposition can, be found in [11] as a problem, and will be given
a proof for that. The importance of this proposition is that is one of the properties

for SN related to the finite intersection property.
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Proposition 2.2.4: Let f: N — W be a continuous function where W be a

compact space. Then B, = { f[B]: B € g} has finite intersection property for
any g € S N.

Proof:

Pick By,B,, ....B, € g. If we can show that NniZ, f(B;) # @ then we are
finished.

Because By,B;,Bs,...,B,, € g hence @ # f(NiZ; B;)
ety f(B)

cn’L, f(B;) { f is continuous}

cni, f(B)) since f(B) < f(B)).

Theorem 2.2.5: If N is a discrete space, then the pair (e, BN) is the stone-Cech

compactification of N.

Proof:

We need to achieve the stone-Cech compactification conditions, which are:
1) BN is compact, this was proved in the Theorem (1.4.6).

2) To show e is an embedding:

1) We claim that e: N — BN is injective. Let £ # d € N. By definition e(#) and
e(d) are two ultra-filters generated by # and d respectively. So {£}° = N\ {¢£} €

e(d)\e(%). Hence, e(¢) # e(d) i.e we have a one to one condition.

i) Obviously, e is continuous, because N is discrete space.

ThE
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i) If we can show that e is a closed map we are done. Suppose B € N be a
closed subset and since B € e[B] then e[B] N B < e[B]. Also, e[B] € e[B] n
B,sinceift ee[B]=>+ = (b') =e(b")where b’ € B=>B €t =1tE€B.

~

Implies e[B] = e[B] N B.

3) To show e[N] is a dense. We need to show e[N] has its points and a limit
point of e[N]. So, we will try to show that if p is a point in SN which is a limit
point of e[N], then every neighborhood of p contains at least one point of e[N]
deferent from p itself. Let A be a basic open subset of SN, then A # @, any a €
A satisfy e(a) € e[N]n 4 and so e[N] N A # @ i.e. e[N] has its limit point.

Hence, e[N] is a dance in SN,
4) Given a compact space W and let f: N — W be continuous, to show there

is a continuous function g: SN — W such that it has a commutative diagram.

First, we need to define the function g. For each g € BN, let A, = { f[B]: B €
g}. So for each g € BN, by Proposition (2.2.4) A has the finite intersection

property, and because W is compact, so A, has non-empty intersection. Choose

g9(g) en Ay
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Secondly, to show the diagram is commutative. Let n € N then {n} € e(n) =
{B € N:n € B}.

So, g(e(n)) € fl{n}] = [{f(n)}]
= {f (n)} since singleton is closed.
Immediately by definition go e = f.

Finally, to show g is continuous. Let g € SN and let v be a neighborhood of
g(g) in W, and since W is compact Hausdorff space then, W is regular space.
So pick a neighborhood u of g(g) with u € v by definition of regular we get a

closed set.

Let B = f~'[u] € N, we claim B € g, suppose N\B € g then g(g) € f[N\B],
and since u is a neighborhood of g(g). So un f[N\B] # @ that is a
contradiction because B = f~[u]. Hence B € g then g € B is a neighborhood
of ¢. Claim g[B] € v. Let P € B = B and suppose g(P) & v, then W\ i is a
neighborhood of g(P) and g(P) € f[B], sinceP € B = Bthen f(P) €
f(B) € f(B) so (W\%) N f[B] # @ that is a contradiction since B = f~[u].

The next proposition, which is founded as an open problem, we found in
[11]. The proof we consider is that if the two continuous maps identify on e[N]

then they will be equal.
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Proposition 2.2.6: Let B, = {f[A]: A € g} be a set belong to W. For each g €

BN, we have N B, is a singleton.
Proof:

By proposition (2.2.4) we show that B, has a finite intersection property and
since W is compact, then every family of closed subsets having the finite
intersection property has non-empty intersection. So, NB, # @ , hence, there
exists «w € NB, such that w is an element of all f(A) for all A4 € g. Now to

show NB, is singleton.

Choose w = g(q) € NB, = ﬂ{f(A):A € c;}. Assume there is another element
m € NB,. Define h: BN — W such that h(g) = m, which is the same way how
we construct function g. Note that g and h have the same behavior from N —

W and they will be equal if they start from N because the continuous functions

on a dense set they are equal.

Proposition 2.2.7: Every left ideal in BN the Stone-Cech compactification for

the discrete set of natural numbers N, contains a minimal left ideal.
Proof:

By the definition of a left ideal immediately SN + P is a left ideal for all P €
BN. Let gefN+P implies fN+g < N+ P. Note that, SN+

g and SN + P are both compact since they are images of right translation
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pp(BN) and p, (FN). Moreover, both are closed since SN is T,- space and every

compact subset of T,-space is closed.

We will try to show SN + g is a minimal left ideal. Consider R = { SN + g; a
left closed ideal on SN and SN + g < BN + P}. Then R # @ since we have
BN +¢g;. So and it is partially ordered by inclusion such that {K; &
K, then K; < K,}. DefineC = {fN+ g, 2 N + g, 2 =weeee } be an chain. By
the finitely intersection property N (BN + g;) # @ which is a left closed ideal.
Denote S =n (BN + g,;) which is the lower bound of C. By Zorn’s lemma R has
a minimal left ideal SN 4+ S among left closed ideals in SN + P, i.e. if F C
BN + S and F is a left closed ideal then F = S.

To complete the proof, we need to show that S is a minimal corresponding to all
space. Claim every left ideal contains a left closed ideal. Let L be a left ideal and
d € L. Therefor, p;(BN) = BN + d < L which is an image of compact space.
Furthermore, it is a closed since it’s a compact subset of Hausdorff space. So,
there exists F a left closed ideal of L. NowF S LcS, ie. F €85

implies F = S.

Lemma 2.2.8: The set of M(BN) is an ideal in BN in fact which is the smallest

ideal corresponding to SN.
Proof:

M(BN) # @ since from the proposition (2.2.7) SN has a minimal left ideal. Let
P € M(BN), P € F whichisone aminimal leftideal in M(SN), then SN + P <
F € M(BN), and so M(BN) is a left ideal. Similarly, for the right ideal. Hence,
M(BN) is an ideal. Finally, to show M(AN) is the smallest. First we need to

show M (AN) is a minimal ideal.

ToE
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Let an ideal L € M(BN) to show L = M(SN). Suppose F be any minimal left
ideal subset of M(BN). Then F N L # Q.

To show FNL is a left ideal in AN. Letx e FnL. Since BN+ x C
Fand SN+ x € Lthen SN+ x € Fn L. Since F N L is a left ideal.

By minimalists of F and since F NL € FthenFNL =F
=>FCL
= L= M(SN)
So, M(BN) is a minimal ideal.

Finally, to show M(BN) is the smallest ideal . Let L be an ideal in M(SN) to
show M(BN) < L we know M(BN)NL # @. i.e. M(BN)NL € M(BN). Letx €
M(BN)NL = BN + x € M(BN)NL

= M(BN)NL is an ideal
= M(BN)NL = M(BN)

= M(BN) € L.
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2.3 Enfolding Semi-group

In this subsection, we define the Enfolding semi-group concept and we

study topological and algebraic properties of it.

Definition 2.3.1[5]: Let K be semi-group and X be a set. Then the action of K

on X (simply say that K acts on X) is a function:
a: K XX > X

(k,x) » kx suchthat (kt)x = k(#x) forall x € X and k,# € K. When K has

an identity say e thene - x = x forall x € X.

Definition 2.3.2[22]: A Dynamical System is denoted by a pair (K, X ), where X
Is a topological space, which is called phase space, that is defined as an acting on
some group (semi-group) K on X. Theset K -x ={k-x : x € X }, is called the

orbit of x. We define £, to be the set of the orbit closure of K - x.

Note that Topological Dynamics is the study of orbits for all points in X.

Now we aim to define the K-system a very important aspect of dynamical
systems, which is used as a very fundamental tool in the abstract theory of

Topological Dynamics.

Definition 2.3.3 [20]: A K-System is a triple (K, X, «) such that K is a semi-
group and X is a Hausdorff compact space called a phase space on K- system,
and a: K X X — X is a continuous action of K on X, we write a(k,x) = k- x =

ak (x).

A subset A from X ina K-systemis invariantif K.A ={ta|la € At € K} C
A.
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Definition 2.3.4[19]: A homomorphism from two K-systems (K,X) and (K,Z)
is a continuous surjection function a: X — Z satisfying a(ka) = ka(a) for all
ke K anda € X.If additionally ais one to one, then it is called an

iIsomorphism of K-systems.

Next, we will provide our main definition in this work, this will be used

in the following results we give in the rest of our section.

The main concepts in our research will be the next definition.

Definition 2.3.5: Let X be a compact Hausdorff topological space and
X% denote the collection of all continuous functions from X to itself, which is a
semi-group under the composition, provided with the product topology, or the
topology point wise convergence. Let T = {f: X — X} be a subset contained in
X% . Then the closure of a set T is called an Enfolding semi-group of T denoted
by €(T), given with the topology of point wise convergent. In particular, if
(K, X, a) is a K-systems then the closure of the set {a*: k € K} in XX is denoted

by E(K, X) will refer to the Enfolding semi-group of the K-systems.

The motivation for studying the Enfolding semi-group is to understand the

algebraic properties of a K-system.

We think the rarity and difficulty of examples of Enfolding semi-groups

Is that these objects are usually non-metrizable.
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The following example is in [22], but it serves the desired purpose.

Example 2.3.6: Foreach n € N,

1 2xm

let X, = {(r,0) = (— = (mod 27‘[)): x=0,1,2,........ } and

2n’ 2m
X = Uuen X, U {(0,0)} as a subspace of R?.
Define f: X - X as f(r,0) = (1,0 + 2nr(mod 2m)).

Forany s € N,

1 28T

f° (Zin ,9) = (27,9 +2—n(mod2n)).

Lets be a 2 —adicinteger. Suppose S = 251 4 252 freee +257  then

251425244257

1 + ...... + 1

2N—S2 2Mn—Sy

) (mod 27‘[)).

Leta =--10101=1 4+ 4 + 16 +....... be a 2 —adic integer. Then for the

function £, defined as £, (r,8) = (r,6 + 2xma,,(mod(2m)), Where a,, = —

22

+

1 1 1 1 1 1 1 1 1
2—4+2—6+""+ +—anda2x+1=5+2—3+;+----+—+—Wesee

22x-2 22x 22x-1 22x+1"

that £, will be a member of £(X) corresponding to a.

Definition 2.3.7 [26]: A net in aset X isa map S: D — X where D is discrete

set.

Note 2.3.8 [14]: A net S convergent to x € X if for any open set U containing x,
thereisdy, € D,Vd >d,: x; € U.

L
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The next Theorem it will help us to prove that the Enfolding semi-group is a

right-topological semi-grou

Theorem 2.3.9: Let D be a topological space and V represent the product
topology on D. Then (D? ,0,V) is a right-topological semi-group. Furthermore,
for each h € DP, h is continuous if and only if A, is continuous where 4, (g) =
hog=pg(h).

Proof:

Suppose that h € DP | and suppose < g; >;¢; iS a net convergence to g in the
product topology D?. Since that, a net < h; >; ¢, is convergent to h in D? if and
only if < h;(x) >;¢; is convergent to h(x) for every x € D. Implies that, <
gi (h(x)) > convergent to g(h(x))in D. Therefore, < g; oh>;¢; is
convergent to g o hin DP and therefore g; o h is continuous. This show p,, is
continuous. Hence, the set of all functions from D — D is a right-topological
semi-group. For the second part, suppose that h is continuous. Hence for every
given net < g; >;; convergence to g in the product topology of DP. Then <
h(g; (x)) >;e; IS convergence to h(g(x)) for everyx € D. Implies < ho
gi >ie; 1S convergence to ( h e g)(x). Hence, h o g; is continuous, i.e. we show

that A;, is continuous.

Conversely, we suppose A, is continuous. Let < x; >;¢; be a net converge to x

in D. Define g;: D — D suchthat g;(x) = x;, Vi €1 and
g: D — D such that g(x) = x.

Therefore, < g; >;¢; converges to g in DP so, < h o g; >;¢; convergeto h o g.

This means < h(x;) >;¢; converges to h(x) and therefore h is continuous.

ThE
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The next two results will prove that the Enfolding is a right- topological semi-

group.

Proposition 2.3.10: On the right-topological semi-group D?, let K be a subset

of the topological center of DP. If K is a semi-group then K is a semi-group.
Proof:

Let m,n € K. Let U be any neighborhood of msn. We need to show that U n
K # @. By Theorem (2.3.9) since p, is continuous, then there exist a
neighborhood V of m s.tp, (V) =Vn € U. Since m € K, so VNK # 0. Let

m; €V NK, and hence 4,, (n) =myn = p,(m;) € U. Note that m; € K <
center DP, which implies that A,, is continuous. Moreover, there is a

neighborhood S of n with 4,, (S) € U. Since n € KthenSNnK # 0.
Letn, € SNKand A, (n) €4, (S) €U.Thenmyn, = A, (n,) €U
= myn, €K
= UNK # Q.

Hence, mn € K.

Lemma 2.3.11: The Enfolding semi-group £(T) is a compact right-topological

semi-group.
Proof:

Since X is compact. Then by Tychonoff’s theorem, X X X X X ... is compact.
But, T € X x X x X ...and E(T) is a closed subset of compact Hausdorff space.

Therefore, E(T) =T € X x X X X ... is a compact Hausdorff space.

E
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We need to show that p is continuous on £(T). Let f € E(T), we need to show
ps is continuous on £(T'). To do that we will first show p, is continuous on T.
Let (g;);c; be aneton T convergence to g. Since g is a pointwise convergence,
then for any x € X, g,,(x) — g(x). Hence g,(f(x)) — g(f(x)). Therefore
pr (gn) convergence pointwise to pr(g). Therefore p, is continuous on the

dense set T and hence on its closure E(T).

Remark 2.3.12: The algebraic structure of the Enfolding semi-group gives some
important characterization of the dynamical system properties of the K-system
(K,X).

1) @ : K — E(K, X) is both a semi-group homomorphism and a K-system.

2) The map ¢ : E(K,X) — X defines as £ — £x is a K-system homomorphism

forall x € X.
3) The map @: BK — E(BK, K ) is an isomorphism.

4) Let ¢ : (K,X) = (K,Z) be a homomorphism of K-system, then ¢(tx) =
tp(x) forallx € Xandz € BK.

Definition 2.3.13: Let (K, X, a) be a K- system and E(K, X) be its Enfolding
semi-group. Then for a non-empty set I € €(K), which is a left ideal if
EK,X)- 1< I, ieforfelandg € E(K,X)suchthatg? € I. Also, I is called
arightideal if g € I. Moreover, I € £(K, X) is an ideal if and only if I is both
a right and a left ideal.
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Definition 2.3.14: A left ideal I in an Enfolding semi-group is minimal if and
only if I is closed in £(K, X) and I does not contain any other proper subset left

ideal.

Lemma 2.3.15: Let £(K, X) be an Enfolding semi-group in K-sysytem (K, X).

Then any left ideal in £(K, X) contains a minimal left ideal.
Proof:

Let I be any left ideal of E(K,X), and let B ={J:]is a closed left ideal of
E(K,X) andJ C I}.

Applying Zorn’s lemma to B, one gets a left ideal /] minimal among all the closed

left ideals that are contained in 1.

Lemma 2.3.16: Let X be a compact topological space then the set of Enfolding

E(K, X) contains an idempotent.
Proof:

Let I be a minimal subset of £(K, X) which is defined by {S € £(K, X), S # 0,
SS € S, S iscompact}. Since E(K, X) itself satisfies these properties, so H + @.
We claim H has a minimal set of this kind. Let C be a chain in H which is a
collection of closed subsets of £(K,X). This chain will satisfy the finite
intersection-property. Therefor, N C # @ is compact. Hence N C € H. By

Zorn’s lemma, let A be a minimal element of ..

Weneedtoshowy-y=y,Vy€e A, i.e. Ay =A. Takeany u € A, Au C Ais
compact since Au = p, (A) which is a continuous image of a compact space.
Let B={v € A:vu = u}, thenB #= @ because u € A = Au moreover, since

B = A n p;[{u}] then B is closed, this implies B is compact. Given x, z € B,

ThE
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S0 xz € AA € Aand xzy = xy = y. Implies xz € B, and thus, B € . Since

B < Aand 4 is minimal, thus B = A, and henceu € B,andsou - u = u.

Remark 2.3.17: Let (K, X) be K-systemand I € £(K,X) be a minimal ideal.
Then the set J of idempotent of I is non-empty.

Proposition 2.3.18: Let (K, X, a ) be K-system and I € £(K, X) be a minimal
ideal and J the set of idempotent of I then:

1) Forallg € I and v € ], then vg = g.

2) For all v € ] then Iv is a group with identity v.
3) The partition of I is {Iv:v € J}.

Proof:

1) Let g € I,and v € J, to prove vg = g. Then vl is an ideal subset of I. So
vl = I, there exists P € I with vP = g. This implies vg = vvP = vP = g.

2) Suppose P € Iv. There exists g € I with gv = P, then Pv = gqvv = qv =
P, so v is both a left and right identity for Iv. Since I is an ideal, and 21 is an
ideal subset of I, then PI = I. There exists r € I with Pr = v, and P(rv) =

(Pr)v =vv = .
Note that (rP)(rP) = r(Pr)P
= r(vP)
= P
Hence, (rv)P = rP
= Pw=v

This implies rv is a left and right invers of 2 in Iv.
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3) Let g €1, and gl is an ideal subset of I, then gl = 1. Suppose S =
{Pel|lgP=gqg}=az'(g) is a non-empty closed subsemi-group of I, see
proof proposition (3.9) in [5].

There exists an idempotent u € J with gu = ¢,s0 g € Iu. Then I=U {Iv| v € J}.
Let u,ve] and g€lvniu. SO g =qu=gqv and there exists p €
Iv with pg = v. This leads u = vu = (pg)u = p(qu) = pg = v.

The next proposition shows that if we have J to be the set of all idempotents in
E(K,X). One can define an equivalence relation ~ on J as u~v iff uv =

v and vu = u. Then, we say u and v are equivalent.

Proposition 2.3.19: Let (K,X) be a K-system. If I,] € E(K, X) are minimal,
ideals in E(K, X) and u? = u € I be an idempotent. Then there is v € J which is

a unique idempotent with uv = uand vu = v.
Proof:

Let u? =u €l and w is a closed ideal subset of I, this mean u/ =1I.
Suppose A={j €J|uj=u}# 0. Then A =] na;1(u)isclosed, and A% €

A. Then there exists v?> = v € 4, sOouv = u.

Similarly, there exists r2 =r € I withvr = v. We get r = ur = uvr = uv =

u. The same way vu = v.

Now, suppose y2 =y € J with uy = uand yu = y. We need to show v =y.
Then y = yu = yuv = yv. This means that y € JunjJy, we getv=1y, v is

unique.

TE
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3.1 Introduction

In previous sections, we saw that the Enfolding semi-group gives several
measurement of the action of N on X. In this chapter, we try to show that if we
give two distinct points P , g € SN, whether there exist some element x, in the
smallest ideal in M (SN) then there exists x such that P - x # g - x. We are able
to give an application of a product discrete countable space of two-point with a
specific system with several conditions, some involving minimal systems, which
are equivalent to ability to splitting p and q in this way. More generally, we feel
that the investigation of the Enfolding semi-group structure of a minimal system
Is a worthy one, and interesting corresponding problems of a purely semi-group

theoretic nature.

3.2 M-stenography and Minimal system

Definition 3.2.1[11]: A continuous homomorphism a: K — H where K be a
semi topological semi-group and H be a compact right-topological semi-group,
(H, ) is called a semi-group compactification if (k) is a dense in H and the
actionof KonH, (k,t) — k-t = a(k)t : K X H - H is a continuous.

Note 3.2.2: In the case of the set of natural numbers set, N, which is a discrete
semi-group set with + operation, the semi-group compactification is the Stone-

Cech compactification SN given with a semi-group additive extended from N.
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Definition 3.2.3: Let (N, X, a) be an N-system. Define ¢: N — (N, X) be a
mapping defined by @ (7n) = a™, which gives us a semi-group compactification
where a”™: X — X for afixed 7. Thus there exist a continuous unique semi-group
homomorphism @: SN — E(N, X) such that @ o Y = ¢.

AN

o ENX)

Remark 3.2.4:

a) Since the image of N is dense in E(N,X), SN is compact and E(N, X) is
hausdorff. Thus, @ is onto mapping.

b) From the definition above, the function @(n)(x) = n - x, which is a right

continuous action of SN on X is called an extended action.

The next lemma gives an equivalence of an isomorphism between the
universal semi-group compactification on the Enfolding semi-group and the

extending action to be effective.
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Lemma 3.2.5: The homomorphism &:B8N — E(N,X) is a topological
isomorphism if and only if the extension action is effective, i.e. if P # g € BN,

then there exists x € X suchthat P - x # g - «.
Proof:

Suppose @ is a topological isomorphism then for all ? # g, ®(P) + ®(q) i.e.
we have a(P):X - X # a(g): X — X, and this the meaning of a separating
point. Thus, from extended action there existx € X such that @(P)(x) #

®(g)(x),thusmean P-x #+ g - x.

Conversely, suppose that the extension action is effective. Since the image of
BN in E(N, X) is dense. Hence, by remark above, @ is surjective. Therefore, we

have @ is continuous surjective homomorphism.

Note that, the continuous map from compact space X to T,,-space is a closed map.
Hence, @ is a closed map sine {a bijective map f: X — Y is closed iff f~1:Y —

Xis continuous}.

We need only to show @ is one to one, that is given immediately from hypothesis

P-x+gqg-x forsome x € Xand P, q € ON.

Note 3.2.6: In case F is a left closed ideal in the universal compactification SN.
Then, from the previously works we did we can define a mapping ¢ : N —»
E(N, F) which is a semi-group compactification. Thus, there exists a continuous

semi-group homomorphism @ : BN — E(N, F) such that & o ¢ = ¢,

BN

) ENN,F)
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and the extended action of SNonFis (k,l) =k-l,k e N,and [ € F.

Corollary 3.2.7: Let BN be the universal compactification of the semi-group N
and F be a left closed ideal of SN. If F has a point P which satisfies the right
cancellation. Then the homomorphism &: N — E(N,F) is a topological

isomorphism.
Proof:

By lemma (3.2.5), if we can show the extended action is effective, we are done.
Lets # £ where s,z € fN. Thens - P # ¢ - P, because otherwise if s-P = % -
P then by the right cancellation implies s = # which is a contradiction. Hence,
D(s)(P) = (1) (P).

Lemma 3.2.8: Let K be a topological semi-group and (H, ) be a semi-group
compactification of K, then there exist a left closed ideal F of H generating an
K-system such that (k,#) - a(k)t: K X F - F.

Proof:

First, for the existence of the left closed ideal. Since K is a right topological semi-

group then by using Corollary (1.2.24) one can have a left closed left ideal F.

Note that, we have an action a: K X H - H, which is defined by (k, %) - k-t
that is continuous. Moreover, F be a closed Hausdorff subset of a compact space
H. Also a : K X F — F is continuous implies a|F : K X F = F is continuous
define by a(k,l) = k-1 for each [ € F. Hence, we can define a K-system
(K, F,a|F).
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Theorem 3.2.9: Let F be a left minimal ideal in a compact right-topological
semi-group SN and M(SN) it is the smallest ideal. Suppose s # ¢ € SN. Then

the following are equivalent:

a) There exists g € F such that s + g + t + g.

b) There exists an idempotent r =r+r € Fwiths+r =t +r.
c) There exists an idempotent e € M(SN) suchthats + e # £ + e.
d) Thereis g € M(fN) suchthats + g # £ + g.

Proof:

From (a) to derived (b) by taking g = r.

From (b) — (c), immediately by taking r = e.
Similarly from (c) — (d) It deriving by taking e = g.

The implication (a) implies (d). Since g € F, and F is a minimal left ideal

then g € M(BN), and by hypothesis s + g # t + g.

Now, assume (d) and derive (b): Recall the definition of the smallest
ideal M(BN) =U { R: R is a minimal right ideal in M(BN), which implies g €
R for some minimal right ideal R}. Also by Theorem (1.28) in [19] RN F isa

group and therefore contains an idempotent say r.

But R minimal right ideal, and thenr 4+ R = R. Henceg =r + n for

some n € R.

Thus r+g=r+r4+n=r+n=q. Ifs+r=2t+rthens+g=s+
r+q=1+1r+q =1+ g which is a contradiction. Therefore, s + r # £ +

Tr.
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Definition 3.2.10: Let M be the smallest ideal of the semi-group K. The semi-
group is a right M-stenography if given s # ¢ € K there is g € M such
that sq # tq.

Note that, the Theorem (3.2.9) gives another equivalence definition to the

right M- stenography.

Definition 3.2.11[1]: The system (K, X) is called a minimal system if the orbit
Kx = {k.x:k € K }isdense in X for every x € X.

Definition 3.2.12: Let (H,a) be a semi-group compactification of the
topological semi-group K. Then the system (K, F) is a minimal system where

F is a left closed ideal of H if and only if F is a minimal left ideal of H.

Theorem 3.2.13: For a topological semi-group (N, +) and for (8N, ¢) be the
universal semi-group compactification. The following are equivalent:
a) The semi-group BN is right M- stenography.

b) If F is a minimal left ideal of SN, then the homomorphism for the minimal
system (N, F) is an isomorphism, and therefore the Enfolding semi-group of this

minimal system is topologically isomorphic to SN.

c) Given P,qg € BN such that P # g, there exist a minimal system (N, X) and

x € X such that P - x # g - x regarding to the extended action.
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Proof:

a) = b): Let F be a left minimal ideal of SN. To show &: N — E(N,F) is
isomorphism. If we can show @ is effective then by lemma (3.2.5) we are done.
Let P # g € BN and since SN is right M-stenographythen 3 x € F st P -

X #+qg-x.

b) = c): We have F is a minimal left ideal in a compact right topology SN. So
by corollary (1.2.24) F is closed. Then (N, F) is a minimal system by definition
(3.2.12). But, we have @: BN — E(N,F) is isomorphism and so by lemma
(3.2.5) the action is effective.

c) = a): LetP # g € BN and (N, X) be a minimal system such that for some
EX,P-x# qg-x. Let F beaminimal left ideal in SN implies F is closed by
corollary (1.2.24). Then F - x € X is a closed since it is a continuous image of
closed left ideal. Moreover, since N(F-x) = (N-F)-x=F-xthen F-x is
an invariant under N. Hence, F - x is Dense since (N, X) is a minimal system.

Thus, £ - x = x for some £ € F.
Therefore, P-t =g -t implies P-x=P-t-x=q -1t -x =g x Whichis
a contradiction with our hypothesis. Hence P -t # g - £ and thus required also

BN is a right M- stenography.
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3.3 Splitting points of BN in M(BN)

LetN be a topological semi-group with universal semi-group
compactification SN. According to Theorems (3.2.13) and (3.2.9), we want to
know that: given P # ¢ € BN, whether there is some g € M(SN), the smallest
ideal of BN, such that Pg # £g.

The next two following definitions are in [7] and [9], but we will define

them in the set of natural number N.

Definition 3.3.1[9]: Let (K, X) be a system. A pointx € X is a uniformly
recurrent point if given any neighbourhood V of x, there is a finite compact

subset M of K such that given k € K, thereism € M withmkx € V.

Definition 3.3.2: Let (K, X) be a system. A point x € X is an almost recurrent
point if given any neighbourhood V of x, there is a compact subset M of K such

that given k € K, there existm € M withmkx € V.,

Remark 3.3.3: The uniformly recurrent points it will be exactly the points that
are almost recurrent for the system (N, X) when N is given with the discrete

topology.

The next theorem overlapping with studying the separable points of SN in
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Theorem 3.3.4: Let (N, X) be asystem, P € X, and F are minimal left ideals in

the universal semi-group compactification SN. The following are equivalent:

a) The orbit closure Ly contains 2 and is a minimal N-system.

b) For the extended action of SN on X, there is m € M,such that the smallest
ideal in SN, and x € X suchthat ? = m - «x.

C)PEF-P.

d) There is e an idempotent e € F such thate - P = P.

e) Lipy =F - P.

f) The point P is an almost recurrent point.

g) The point 2 is an uniformly recurrent.

Proof:
The equivalence of the first five parts can be used Theorem (2.38) in [19]
by substitution N and BN. In addition equivalence (f) can be looked to Theorem

(4.2) in [16]. The equivalence of (g) can get by taking N with the discrete space.

In the following Theorem we consider SN* = SN U {0} where {0} is the
identity of the natural number (N, +).

Theorem 3.3.5: Let SN be the universal compactification of the topological
semi-group N. Let P # ¢ € SN and F be a minimal left ideal of SN. The

following statements are equivalent:
a) There exist g € F such that Pg + tq.

b) There is a system (N, X) and an almost recurrent (or an uniformly recurrent)

point x € X such that P - x # £ - x for the extended action.
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c) Let (N,W) be any system for which the homomorphism from gN —
E(N, W) is an isomorphism. Then there is an almost recurrent (or uniformly

recurrent) pointw € W suchthat? -w + £ - w.
Proof:

a) => b): Since F be a minimal left ideal of SN then we can consider (N, F) be

a minimal system. By hypothesis Pg # tg and F is minimal this implies

F.q =F,s0qg € F.q. Then by Theorem (3.3.4) part (f) and (g), implies g is an

uniformly recurrent and an almost recurrent point.

b) =>a): Let (N, X) be asystem, and let x be an almost recurrent (or an uniformly
recurrent) point in X such that P -x # £ - x. By Theorem (3.3.4), x € F - x.

Hence, there exist g € F such that x = g - x.
ThenPg-x=P-qg-x

=P-x

1 x

=t q-x

=19 x
Hence, Pg + 1g.

a) => c¢): Let (N,W) be a system for which the homomorphism is an
isomorphism. By Lemma (3.2.5), there exist w € W suchthat P - ¢ - w = Pg -
w#*1tg-w=+1-qg- w, and by Theorem (3.3.4) (since condition (b) holds
implies (f) and ( g ) is hold) then point ¢ - w is an almost recurrent and an

uniformly recurrent.
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c) => a): Consider the system (N,SN*) of the universal semi-group
compactification (BN, ), where {0} is a discrete point added to SN, and n +
0 =y (n) for all n € N. The addition of SN extends to SN* by making {0} act
as an identity of SN, and SN* keep it a right topological semi-group.

Then for P # £ € BN, we have P + 0 =P # ¢t = £t + 0. Hence, by Lemma
(3.2.5), the homomorphism @: fN — E(N, SN ) is an isomorphism.

From hypothesis, there is an almost recurrent point ¢ in BN* such that Pg #
tg. Since F is a minimal immediately by Theorem (3.3.4), g € Fg. Thus, there
Is v € F such that g = vq. Then Pvrg = Pqg + tq = tvq, and so Pv +

tv.
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3.4 Application example of separating of SN

In this section and for our objective we give an application for a specific
example of a semi-group and its compactification with a particular system. We
will introduce a specific subset example Y = {0,1 }N defined with a shifting
operator with a specific system. We will apply some facts we discussed in the

previous section on a set Y and conclude some properties.

Example 3.4.1: Let Y ={0,1} be the countable of product discrete space
consisting from two-points. We can think aboutasetY as:Y ={y : N - {0,1}}
where y represented the characteristic function and each members x of Y can be

viewed as infinite tuples like x = ( (1), x(2), x(3), ...).

Now define the shift operator T:Y — Y by T(x)(n) = y(n + 1)wherex €

Y is shifting a tuple to the left one place, ignoring the first entry.

We consider the set of semi-groups of continuous functions {T”:n € N}. Let

w=E{T"™: n € N}, Y) be the Enfolding semi-group set.

Let op: N — E{T": n € N},Y) by o(n) =T", and the extension of ¢
denote by @: BN — E({T"*: n € N},Y) be a homomorphism.

The next theorem result is a modification of the result of reference [7].
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Theorem 3.4.2: The homomorphism @: SN — w =:E({T":n € N},Y) is

defined in the example above is a topological isomorphism.
Proof:

The essence of a proof of the theorem will be by using lemma (3.2.5). Let ¢ #
P be two ultrafilters in SN. Note that the points in N are separated by @& since

each n gives a different T".

Therefore, @ is separates points on N and this show the separation of the case of
a principle ultra-filter. For generality suppose without losing the generality
assume that ¢ is a non-principal ultra-filter. Then there exists an infinite set B ©
N such that B € g and since g and P are distinct then its complement B¢ € P.
Definetheset C = B + 1, and let x € Y and y, be the characteristic function of
C.

Foreachn € B, ®(n)(x) =T"(x)and T"(x)(1) = y(n + 1) = 1since n +
1€ C.ButB € g impliesg € B = B.
Hence g - 2(1) = (©(¢)(*))(1)
=T"(x)(1)
=x(n+1)
=1
Similarly if # ¢ B, then P - x(1) = (®(P)(x))(1)
=T"(x)(1)
=x(n+1)=0

Thus g -x # P -x, and hence by Lemma (3.2.5) implies @ is topological

isomorphism.
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Remark 3.4.3:

a) From above work a separable by appoint g € BN means that for any two
distinctelement P, ¢ € N then P - g # % - g, and this g satisfy that for any
other two distinct element.

b) By using Theorem (3.4.2) and (3.3.5) one can get a separable by a minimal

left ideal F but this required a one can find a uniformly recurrent point in

AN.

Remark 3.4.4: The uniformly recurrent points can also be represented as the
characteristic functions y, on N for some A € N, that are almost periodic
functions. This because we can pick any basic neighbourhood and on that
neighbourhood, we assume there is a compact set K in that neighbourhood such
that when we do translation with this characteristic functions on these points on

K will get this neighbourhood.

Forexampleif A = {4,8,16, ...} € Ntheny = y, = (0,0,0,1,0,0,0,1, ...) and let
U={0}x{0}x{0}x {1} xY x Y ..be abasic neighborhood of y. Note that,

with the almost periodic function then
T(y)gU
T*(y) €U
T°(y) €U

T*(y) €U
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Lemma 3.4.5: Suppose g € fNand x €Y, n € N. Then®(g)(x)(n) =1 if
and only if x~1({1}) — n € g such that x = yz where B = {n : y(n) = 1}.

Proof:

Lett gepfN,xeYand n€N ie x={y:N—{0,1}} and so x=
(x(ny), x(n,),...). Suppose that B =x"1[{1}]E N and j = ®(g)(x)(n)
where @: BN — w =:E({T™":m € N}, Y), note @(g)(x)eY={y:N—
{0,1}}, and @(g)(x)(n) =0o0r1, and letV={y €Y :y(n) =j} be a
neighborhood of @(g)(x). SothatU = {f € €: f(x) € V}is a neighborhood

of &(g).
BN
/N
N m—
®

Note that, from the diagram ®(g) € w.

Therefore, ®(g)(x) € V from definition of V. Note that, the element in w is set
of continues functions f:Y — Y and the topologic define on w will be the
product topology so we have a function g: w — Y is a continuous function since
its just a projection map. Such that, the evaluation at x we have g(f) = f(x) €
Y since V is a neighborhood of @(g)(x) and g~1(V) = U is a neighborhood of
@(g) since g is continuous. Note that, ®(g) € U and ®~1(U) is an open set
containing ¢. Hence, there exist a basic open set A = A such that ¢ € 4 <
@~1(U). This leads to g € A = A is a basic neighborhood and since @ is a closed
map then @(4) = @(A) and since U is a neighborhood of @(g) so we have an
open set @(A4) subset of U. Now pick 4 € g such that ®[A] € U.

ThE
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We claimifj =0thenA N (B —n) = @ thisimplies AN (B —n) & g. Now,
if j = 1then A € B — n and since A € g this implies B —n € g.

Let m € A be given then T™ = @(m) € U since @[A] € U. So that from
definition of U then T™(x) € Vand T™(x)(n) = j. Thatis y(m + n) = j. So
ifj=0thenm+n¢B.Ifj=1thenm+ n € B.

The next two following statements I'(B) and (B) in the next remark both

work to characterize our problem of uniformly recurrent on {0.1 }N.
Remark 3.4.6: Let B © N; we will use the following statements representing:
a) T'(B) is the phrase that y is the uniformly recurrent on {0.1 }V.

b) Q(B) is the phrase that there is a sequence {4,,},,—; of subsets of N and a

sequence {m(n)},-, in N such that
I (UanB A/n + 4’L) N ( UnEN\B An + ’I’L) = @
ii. Foreveryn e N, N=u""" (4, — 1), and

ii. Foreveryn € N, A4,.; €A,.

Lemma 3.4.7: Let B € N and if statement Q(B) is hold then I'(B) is hold.
Proof:

From definition of Q(B), one can pick < A,, >,’_; and < m(n) >, _,. Lety =
xg and let V be a neighborhood of y in Y. We assume that we have some b € N
suchthat V = {x € Y:foreachj € {1,2,3, ...,b}, x(j) = y(j) }.

i.e. for instance if y = y5 = (0,1,1,0,1,0,...) and V = {0} x {1} x {1} X Y X
Y x-- be a neighbourhood of y and let b = 3

L
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y; =(0,1,1,1,1,....)

y, = (0,1,1,0,0,....) €V

ys = (0,1,1,1,0, ....)

We will show that it for every r € N there existsd € {1, 2, 3,...,m(b)} with
T™*4(y) € V. Letr € N begivenand let k = r + m(b) + b. Pick some h € A4,.
Now from the Remark above part (2), h +r EUZ‘:(?) Ap —d implies h+r €
Ap, —d for some d. So pick d €{1,2,3,....m(b)} with h+r+d € A4,.
Suppose T"*%(y) & V i.e. is not a recurrent point corresponding to d. So pick
j €{1,2,3,....,b} such that T"*4(y)(j) # y(j). Let a =7 +d + j. Since by
definition T™2¢(y)(j) = y(r+d +j)then y(j) #y(a) so either a €
Bandj & Bora & Bandj € B.

In both cases from the Remark above part (2) we have (4, +a) N (4; +j) =
@.Buthe A, € A, (sincea<kandd <m(b)anda=r+d+j <k=r+
m(b) + b). Therefore h+a€ A, +a. Also h+a—j=h+r+dei,c
Aj. Hence, h + a € A; + j is a contradiction since (4, + a) N (Aj +j) = 0.

Lemma 3.4.8: Let B € N and suppose I'(B) thenT'(B+ 1) orI'((B + 1) U {1})
is hold.

Proof:

Let x = yp be a uniformly recurrent, by the definition of I'(B) for each # € N,
letv, = {y e Y:forallj € {1,2,3,..., £}, y(G) = () }.

So we can have {3n € N:T"(x) € v,.} # @. Thus we can pick £(¢) € N such
that T*® (x) € v,.
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Case (1): If {# € N: £(¢) € B} is infinite. Let A = (B + 1) U {1} to show I'(A)
ishold. Lety = y4. And letu, = {z € Y:forallj € {1,2,3,...,£},z(j) = y(j)}
be the one of these v,. Which we constructed from above which is a
neighbourhood of y. Since we have infinite set, pick £ > ¢ such that £(¢ ) €
B. Pick r € N such that for all » € N Isomed € {1,2,3,...,r} satisfies

T"*4(x) € Vy(y)4¢- TO show that for all n €N, some d € {1,2,3,..,7 +
£(¢ )} has T"*%(y) € uy.

Let n €N and take j € {1,2,3,..,7} such that T"*/(x) € vy,y,, from
hypothesis. Letd = j + #(¢ ). Thend € {1,2,3, ...,7 + £(¢)}.

We claim that T"**%(y) € u,. Tothisend, leti € {1,2,3, ..., £} be given. Assume
i =1theny(i) = x4(1) =1since1 € 4, and T"*¢(y)(i) = y(n +d + 1)

=ysin+d+1)

= xg(n +d)

=x(n+d)

=x (n +j+ {’(t‘))
Now T@*D(x) € vy(4)4, » and so TP (x) ({’(t)) =x (ﬁ(t)) = 1 since
£(¢') € B. Thatis T"*(y) () = y(i).

Now, assume i€ {2,3,..,}, then y(i)=x({—1)=y,(i—-1), and
Ty =y(n +d +10)

=x(n+d+i—-1)

=x(n+j+¢(t)+i—-1)

ThE
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Again T"(x) € vy(p)y, 50, T ()(E(t) +i—1) =x(e(t ) +i—1).
Since T(*)(x) € v, then x(£(#) +i—1) = T () (i — 1) = x(i — 1).
Hence, T4 (y) (i) = y(i).

Case (2): If {# € N: £(¢) € B} is finite. Then {# € N: £(¢) & B} is infinite.

Assume A = B + 1 and the proof is similar as case (1).
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