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The major problem that we investigate in this work is the extent to which 

the full complexity of the Enfolding semi-group can be exhibited in a minimal 

system. We feel that the investigation of the Enfolding semi-group structure of a 

minimal system is a worthy one and interesting corresponding problems of a 

purely semi-group theoretic nature. We consider minimal left ideals ℱ of the 

universal semi-group compactification 𝛽𝐾 of a topological semi-group 𝐾. We 

derive several conditions, some involving minimal system, which are equivalent 

to the ability to split 𝓆 and 𝓇 in this fashion, and then specialize to the case that 

𝐾 = ℕ, and the compactification is 𝛽ℕ. We give an application of a product 

discrete countable space of two-point with a specific system with several 

conditions, some involving minimal systems, which are equivalent to ability to 

splitting 𝓆 and 𝓇 in this way.  
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In this thesis, we study properties in the theory of topological dynamical 

system.  A dynamical system most likely originated at the end of the 19th century 

through the work of Henry Poincare in his study of celestial mechanics [3]. Mr. 

Joseph Auslander has conducted a number of studies on Minimal flows and their 

extensions see [1]. Many other study on automorphisms and equivalence relations 

in topological dynamics be done by  David B. Ellis and Robert Ellis see [5]. 

However, one can say that dynamical systems draws its theory and techniques 

from many areas of mathematics, from analysis to geometry and topology, and 

into algebra [22]. We study the dynamical system with the Stone-Čech 

compactification of the set of natural number.  This theory applied to get some 

results and give one application. For a purpose, we need to define the concepts of 

Enfolding semi-group. It proved to be a fundamental tool in the abstract theory 

of topological dynamical system.  Consider a 𝐾-system with compact phase space 

𝑋 and 𝐾 is a semi-group denoted by (𝐾, 𝑋, 𝛼) where 𝛼: 𝐾 × 𝑋 → 𝑋 is a continuous 

action of 𝐾 on 𝑋, denoted by 𝛼(𝑘, 𝑡) = 𝑘 ∙ 𝑡 = 𝛼𝑘  (𝑡) [6] and [25]. The system 

(𝐾, 𝑋) is called minimal system if the orbit 𝐾𝓍 = {𝑘 ∙ 𝑥: 𝑘 ∈ 𝐾 } is Dense in 𝑋 

for every 𝓍 ∈ 𝑋 [17]. This equivalent to 𝛽𝐾 ∙ 𝓍 = 𝑋 for every 𝓍 ∈ 𝑋 for the 

extended action [5]. We look to 𝐾-system of closed left ideal ℱ where ℱ is a 

minimal left ideal of compact right topological semi-group 𝐻 denoted by (𝐾, ℱ) 

[22]. The major problem that we investigate is the extent of using the Enfolding 

semi-group can exhibited in a minimal system. In particular, we consider the 

question of whether 𝛽ℕ can be the Enfolding semi-group of a minimal system. 

We show that the Enfolding semi-group of ℱ is homeomorphically isomorphic to 

𝛽ℕ if and only if given 𝓆 ≠ 𝓇 in 𝛽ℕ, there is some 𝓅 in the smallest ideal of 𝛽ℕ 

with 𝓆 ∙ 𝓅 ≠ 𝓇 ∙ 𝓅.  

                                  

INTRODUCTION 
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In chapter one, we introduce the suitable notation, give an exposition of 

some of the elementary properties and the details of the construction. Plenty of 

these properties be applied directly, and serve in what follows in coming chapters 

and find some results. 

Where we studied of the left (right) ideal, it is given as follows ℱ (resp. ℛ) left 

and (right respectively) [12]. We look to the definition of the right topological 

semi-group denoted by (𝐾, . , 𝜏) where (𝐾,· ) is a semi-group, and (𝐾, 𝜏) is a 

topological space, and for all 𝓍 ∊ 𝐾, 𝜌𝓍 ∶  𝐾 → 𝐾 is continuous where as 𝜌𝓍 is a 

right translation [2] and [11]. In addition, we study the concept of the filter and 

ultra-filter and various types of filter [21]. Many properties are given and then 

prove some of important properties. A filter 𝜇 on a set 𝐾 is principal if there is a 

non-empty set 𝑋 ⊆ 𝐾, such that 𝜇 = {𝐴 ⊆ 𝐾: 𝑋 ⊆  𝐴}, otherwise 𝜇 is non-

principal. We will define a topology on the set of all ultra-filters on a set ℕ, 

denoted by 𝛽ℕ = { 𝓆: 𝓆 is an ultra-filter on ℕ} is the set of all ultra-filter on a set 

ℕ and establish some of the properties. We look to the algebraic structure on the 

set of ultra-filter by defined the operation + on it define as follow: for any 𝐴 ⊆ ℕ 

and 𝓃 ∈ ℕ we define 𝐴 − 𝓃 = {𝓍 ∈ ℕ: 𝓃 + 𝓍 ∈ 𝐴} so for two ultra-filters 𝓅, 𝓆 ∈

𝛽ℕ given then 𝓅 + 𝓆 = {𝐴 ⊆ ℕ|𝓃 ∈ ℕ|𝐴 − 𝓃 ∈ 𝓆} ∈ 𝓅} see [8] and [13]. 

In chapter two, we are going to do an enlargement inside the space 𝛽ℕ 

which is called stone-Čech compactification which is the technique for 

constructing a universal map from a topological space ℕ [23] and [24], this is the 

largest compact space generated from the space. Where we have be proven the set 

ℬ𝓆 = { 𝑓[𝐵]̅̅ ̅̅ ̅̅ : 𝐵 ∈ 𝓆} has finite intersection property where 𝑓: ℕ → 𝑊 be 

continuous function where 𝑊 be a compact space. While the finite intersection 

property is any sub collection family of sets we call this family satisfy finite 

intersection property if the intersection of any finite number of elements of this 

family is non-empty [8]. Moreover (𝑒, 𝛽𝑁) is the stone-Čech compactification of 

ℕ where 𝑒: ℕ → 𝛽ℕ. We define the Enfolding semi-group denoted by ℰ(𝑇) 
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where 𝑋 be a compact Hausdorff topological space as follows: if 𝑇 = {𝑓: 𝑋 → 𝑋} 

be a set of continuous function contained in 𝑋𝑋 , then the closure of a set 𝑇 is the 

Enfolding of 𝑇. In particular if (𝐾, 𝑋, 𝛼) is a 𝐾-systems then the closure of the set 

{𝛼𝑘: 𝑘 ∈ 𝐾} in 𝑋𝑋 denoted by ℇ(𝐾, 𝑋) will referred to the Enfolding semi-group 

of the 𝐾-systems. The Enfolding semi-group ℰ(𝐾, 𝑋) is a compact right-

topological semi-group. In addition, algebraic properties was given for this 

concept [28]. 

In chapter three, we define the right 𝑀-stenography where 𝑀 is a smallest 

ideal of the semi-group 𝐾 given as: if  𝑠 ≠ 𝓉 ∈ 𝐾 there is  𝓆 ∈ 𝑀 such that  𝑠𝓆 ≠

𝓉𝓆. In addition, the uuniformly recurrent and almost recurrent point was 

discussing in this chapter such that, let (𝐾, 𝑋, 𝛼) be a system a point 𝓍 ∈ 𝑋 is a 

uniformly recurrent point if given any neighbourhood 𝑉 of 𝓍, there is a finite 

compact subset 𝑀 of 𝐾 such that given 𝑘 ∈ 𝐾, there is 𝑚 ∈ 𝑀 with 𝑚𝑘𝓍 ∈ 𝑉 [7] 

and [9]. The uniformly recurrent points it will be exactly the points that are almost 

recurrent for the system (ℕ, 𝑋) when ℕ is given with the discrete topology. For 

our objective, we give an application by a particular example of a semi-group and 

its compactification with a particular system. Let 𝑌 =  {0,1 }ℕ consisting of two 

points discrete space and defined a shifting operator 𝑇: 𝑌 ⟶  𝑌 by 𝑇(𝓍)(𝓃) =

𝜒(𝓃 + 1)where 𝓍 ∈ 𝑌.  
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 Chapter One:                       Fundamental Concepts with some Results    

 

  
 
 
 
 1 

 

1.1 Introduction 

In this chapter, we have given a basic information, which are useful in our 

work. We defend the left (right) ideal on semi-group 𝐾 this will lead us for the 

smallest ideal 𝑀(𝐾), which is the union of minimal left (or right) ideal. We 

explore the concepts of a filter and ultra-filters, which will be used to define the 

set 𝛽ℕ for more information you can see [27]. In addition, several proofs.  

 

1.2 Some Basic definitions and properties 

Definition 1.2.1 [15]: A semi-group is a pair (𝐾,∗) where 𝐾 is non-empty set 

and ∗ is a associative binary operation on 𝐾. 

Formally a binary operation on 𝐾 is a function ∗: 𝐾 × 𝐾 ⟶ 𝐾 such that the 

operation is associative iff (𝑝 ∗ 𝑞) ∗ 𝑟 = 𝑝 ∗ (𝑞 ∗ 𝑟) for all 𝑝, 𝑞 and 𝑟 in 𝐾. Also 

𝐾 is closed under ∗ if 𝑝 ∗ 𝑞 ∈ 𝐾 for any 𝑝, 𝑞 ∈ 𝐾.  

 

Example 1.2.2: Each of the following is a semi-group   

1- The set of natural numbers ℕ under multiplication or addition is a semi-group. 

2- (𝐾,∗) where 𝐾 is a non-empty set where 𝓍 ∗ 𝑦 = 𝓍 or 𝑦 for all 𝓍, 𝑦 ∈ 𝐾 is a 

semi-group. 

3- (ℕ,∨) such that 𝑝 ∨ 𝑞 = max {𝑝, 𝑞}, where 𝑝 ∈ ℕ and 𝑞 ∈ ℕ. 
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Definition 1.2.3 [14]: Let 𝐾 be a semi-group, and let ℱ, ℛ and 𝐼  be a non-empty 

subset of 𝐾 then:  

1- ℱ is a left ideal of 𝐾 if and only if ∅ ≠  ℱ ⊆ 𝐾 and 𝐾ℱ ⊆ ℱ. 

2- ℛ is a right ideal of 𝐾 if and only if ∅ ≠ ℛ ⊆ 𝐾 and ℛ𝐾 ⊆ ℛ. 

3- 𝐼 is an ideal of 𝐾 if and only if 𝐼 is a left ideal and right ideal of  𝐾.  

 

Example 1.2.4 [20]:  

1- Let 𝐾 be a semi-group. If 𝑧 is a zero in 𝐾 then {𝑧} is an ideal in 𝐾. 

2- In the commutative semi-group (ℕ, +), the ideals are the sets [𝑎, ∞)  =

 {𝓃 ∈ ℕ ∶ 𝑎 ≤ 𝓃}, where 𝑎 is an arbitrary element of ℕ. 

 

Definition 1.2.5 [14]: Let 𝐾 be a semi-group, ℛ  is a right ideal of 𝐾, and ℱ 

left ideal of 𝐾. Then  

1- ℱ is a minimal left ideal of 𝐾 if and only if ℱ is a left ideal of 𝐾 and 

whenever 𝐽 is a left ideal of 𝐾 and 𝐽 ⊆  ℱ one has 𝐽 =  ℱ. 

2- ℛ is a minimal right ideal of 𝐾 if and only if ℛ is a right ideal of 𝐾 and 

whenever 𝐽 is a right ideal of 𝐾 and 𝐽 ⊆  ℛ one has 𝐽 =  ℛ. 
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Example 1.2.6 [20]:  

1- A Semi-groups with a zero has only one minimal left (right two-sided) ideal 

of 𝐾 namely the trivial one {0}.  

2- The integer numbers with addition (𝑍, +) has no trivial minimal ideal. 

         

The next Lemma can, be found in [11] as a problem, and will be given a    

proof for that. 

Lemma 1.2.7 [11]: Let 𝐾 be a semi-group. 

1- Let ℱ and 𝐿 be left ideals of 𝐾. Then ℱ ∩ 𝐿 is a left ideal of 𝐾 if and only 

if ℱ ∩ 𝐿 ≠ ∅. 

2- Let ℛ be a right ideal of 𝐾 and let ℱ be a left ideal of 𝐾. Then ℛ ∩ ℱ ≠ ∅. 

Proof:  

1- Suppose that ℱ ∩ 𝐿 is a left ideal immediately by definition of left ideal we 

get ℱ ∩ 𝐿 ≠ ∅. Conversely, suppose  ℱ ∩ 𝐿 ≠ ∅.  

To show ℱ ∩ 𝐿 left ideal we need to show 𝐾(ℱ ∩ 𝐿) ⊆ ℱ ∩ 𝐿. Let 𝓍 ∈

𝐾(ℱ ∩ 𝐿), so 𝓍 = 𝑘𝑦 where  𝑘 ∈ 𝐾 and 𝑦 ∈ ℱ ∩ 𝐿. But ℱ and 𝐿 are left ideal 

then 𝑘𝑦 ∈ ℱ and 𝑘𝑦 ∈ 𝐿, but 𝑘𝑦 = 𝓍 hance 𝓍 ∈ ℱ ∩ 𝐿. 

2- Let 𝓍 ∈ ℛ and 𝑦 ∈ ℱ then 𝓍𝑦 ∈ ℛ and 𝓍𝑦 ∈ 𝐿 by definition (1.2.3). 

 

Lemma 1.2.8 [11]: Let 𝐾 be a semi-group and let 𝓉 ∈ 𝐾. Then 𝐾𝓉 is a left ideal, 

𝓉𝐾 is a right ideal and 𝐾𝓉𝐾 is an ideal. 

Proof: See the proof of Lemma (1.30 part a) in [11].      
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Theorem 1.2.9 [20]: Let 𝐾 be a semi-group. 

1- If ℱ is a left ideal of 𝐾 and 𝓍 ∈ ℱ, then 𝐾𝓍 ⊆ ℱ. 

2- Let ∅ ≠ ℱ ⊆ 𝐾. Then ℱ is a minimal left ideal of 𝐾 if and only if for each 𝓍 ∈

ℱ implies 𝐾𝓍 = ℱ.  

Proof:  

For part 1: This follows immediately from the definition of left ideal. 

For part 2: Assume that ℱ is a minimal left ideal of 𝐾 and 𝓍 ∈ ℱ. By Lemma 

(1.2.8) 𝐾𝓍 is a left ideal and 𝐾𝓍 ⊆  ℱ by part (1) above. Since ℱ is minimal left 

ideal, hence 𝐾𝓍 = ℱ. 

Conversely, Suppose ℱ is a left ideal. Let 𝐿 be a left ideal of 𝐾 with 𝐿 ⊆ ℱ. Pick 

𝓍 ∈ 𝐿. Then by part (1) above, 𝐾𝓍 ⊆  𝐿 and so  𝐿 ⊆ ℱ = 𝐾𝓍 ⊆ 𝐿. Hence ℱ is a 

minimal. 

 

Theorem 1.2.10 [11]: Let ℱ be a minimal left ideal of the semi-group 𝐾, and let 

𝐽 ⊆  𝐾. Then 𝐽 is a minimal left ideal of 𝐾 if and only if there is some 𝓉 ∈ 𝐾 such 

that 𝐽 =  ℱ𝓉. 

 Proof:  

Assume 𝐽 is a minimal left ideal of 𝐾 and pick 𝓉 ∈ 𝐽. Since 𝐾ℱ𝓉 ⊆  ℱ𝓉 and 

ℱ𝓉 ⊆ 𝐾𝐽 ⊆ 𝐽 then ℱ𝓉 is left ideal of 𝐾 in 𝐽.  But, 𝐽 is minimal and so ℱ𝓉 = 𝐽. 

Conversely, let 𝓉 ∈ 𝐾 clearly ℱ𝓉 ⊆ ℱ and a left ideal of 𝐾. But ℱ is a minimal 

left ideal, so ℱ𝓉 = ℱ. Thus, ℱ𝓉 is a minimal left ideal implies 𝐽 is a minimal left 

ideal. 
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Corollary 1.2.11 [20]: Let 𝐾 be a semi-group. If 𝐾 has a minimal left ideal, then 

every left ideal of 𝐾 contains a minimal left ideal.  

Proof:  

Let ℱ be a minimal left ideal of 𝐾 and let 𝐿 be a left ideal of 𝐾. Pick 𝓍 ∈ 𝐿. Then 

by Theorem (1.2.10), ℱ𝓍 is a minimal left ideal which is contained in 𝐿. 

 

Remark 1.2.12: We will denote of the smallest ideal set in the semi-group 𝐾 

by 𝑀(𝐾) which is the set contained in every ideal in 𝐾. 

 

Theorem 1.2.13 [11]: Let 𝐾 be a semi-group. If 𝐾 has a minimal left ideal, then 

𝑀(𝐾) exists and 𝑀(𝐾) = ∪ {ℱ ∶  ℱ is a minimal left ideal of 𝐾}. 

 Proof: 

Let ℋ = ∪ {ℱ: ℱ is a minimal left ideal of 𝐾}. First we need to show that ℋ is 

a minimal ideal. Let ℱ ∈ ℋ be a minimal left ideal and let 𝐼 be any ideal of 𝐾. 

By Lemma (1.2.7) part (2), ℱ ∩  𝐼 ≠  ∅. Let 𝑠 ∈ ℱ ∩ 𝐼 and 𝓉 ∈  𝐾, implies 𝓉𝑠 ∈

ℱ ∩ 𝐼. So ℱ ∩  𝐼 is a left ideal and a subset of minimal left ideal ℱ. Therefore 

ℱ ∩  𝐼 = ℱ. Since ℱ ⊆ 𝐼 hence ℋ ⊆ 𝐼, which implies that ℋ is the smallest. It 

suffices to show that ℋ is an ideal of 𝐾. Note that ℋ ≠ ∅ by assumption. Let 

𝑠 ∈ ℋ and pick a minimal left ideal ℱ such that 𝑠 ∈ ℱ. Then 𝓉𝑠 ∈ ℱ ⊆ ℋ, for 

all 𝓉 ∈ 𝐾. Hence ℋ is left ideal. By Theorem (1.2.10), ℱ𝓉 is a minimal left ideal 

of 𝐾, so ℱ𝓉 ⊆  ℋ while 𝑠𝓉 ∈  ℱ𝓉. 
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The next Lemma can, be found in [11] as a problem, and will be given a    

proof for that. 

Lemma 1.2.14 [11]: Let 𝐾 be a semi-group. 

1- Let ℱ be a left ideal of 𝐾. Then ℱ is minimal if and only if ℱ𝓉 =  ℱ for every 

𝓉 ∈ ℱ. 

2- Let 𝐽 be an ideal of 𝐾. Then 𝐽 is the smallest ideal if and only if 𝐽𝓉𝐽 = 𝐽 for 

each 𝓉 ∈ 𝐽. 

Proof:  

1- If ℱ is a minimal and 𝓉 ∈ ℱ, then ℱ𝓉 is a left ideal of 𝐾 and ℱ𝓉 ⊆  ℱ, so 

ℱ𝓉 = 𝐹. Now assume ℱ𝓉 = ℱ for every 𝓉 ∈ ℱ and let 𝐿 be a left ideal of 𝐾 with 

𝐿 ⊆ ℱ. Pick 𝓉 ∈ 𝐿. Then ℱ = ℱ𝓉 ⊆ ℱ𝐿 ⊆ 𝐿 ⊆ ℱ. 

2- Suppose 𝐽 is smallest ideal then 𝐽 =∪ {minimal left ideals}. Since 𝐽 is an 

ideal, 𝓉 ∈ 𝐽, then 𝐽𝓉𝐽 ⊆ 𝐽 by definition of ideal. Since 𝐽 is smallest ideal then 𝐽 ⊆

𝐽𝓉𝐽, hence 𝐽𝓉𝐽 = 𝐽. Conversely, suppose that 𝐽𝓉𝐽 = 𝐽, for each 𝓉 ∈ 𝐽, to show 𝐽 

is the smallest ideal. Let 𝐼 be an ideal of 𝐾 such that 𝐼 ⊆ 𝐽. Let 𝓉 ∈ 𝐼, then is 𝓉 ∈

𝐽 implies 𝐽 = 𝐽𝓉𝐽 ⊆ 𝐽𝐼𝐽 ⊆ 𝐼 ⊆ 𝐽, and hence 𝐽 = 𝐽𝓉𝐽 is a minimal ideal. To show 

𝐽 is smallest ideal. Let 𝐼 be an ideal of 𝐾 to show 𝐽 ⊆ 𝐼. Note that 𝐼 ∩ 𝐽 ≠ ∅, let 

𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽, this is 𝑎𝑏 ∈ 𝐼,and 𝑎𝑏 ∈ 𝐽. To show 𝐽 ∩ 𝐼 is an ideal, let 𝓍 ∈ 𝐽 ∩

𝐼,𝓉 ∈ 𝐾  

        ⇒ 𝓉𝓍 ∈ 𝐽 and 𝓉𝓍 ∈ 𝐼, hence 𝐽 ∩ 𝐼 is left ideal.   

Similarly, 𝐽 ∩ 𝐼 is right ideal. This leads 𝐽 ∩ 𝐼 ⊆ 𝐽, 𝐼 

                                                              ⇒ 𝐽 ∩ 𝐼 = 𝐽 

                                                              ⇒ 𝐽 ⊆ 𝐼 

Hence 𝐽 is the smallest ideal. 



  Chapter One :                       Fundamental Concepts with some  Results 

7 
 

Theorem 1.2.15 [11]: Let 𝐾 be a semigroup. If ℱ is a minimal left ideal of 𝐾 

and ℛ is a minimal right ideal of 𝐾, then 𝑀(𝐾)  =  ℱℛ. 

Proof:  

Clearly ℱℛ is an ideal of 𝐾. By Lemma (1.2.14 part 2), we need to show that 

𝑀(𝐾)  =  ℱℛ. So, let 𝑦 ∊ ℱℛ. Then ℱℛ𝑦ℱ is a left ideal of 𝐾 which is 

contained in ℱ. So ℱℛ𝑦ℱ = ℱ and hence ℱℛ𝑦ℱℛ =  ℱℛ since ℱ is minimal 

left ideal. 

Theorem 1.2.16 [11]: Let 𝐾 be a semi-group and assume that there is a minimal 

left ideal of 𝐾 which has an idempotent. Then every minimal left ideal has an 

idempotent.  

Proof: See the proof of Theorem (1.56) in [11]. 

 

Definition 1.2.17 [18]: Let 𝐾 be a semi-group and 𝓍, 𝑦 ∊ 𝐾 we define the left ( 

resp. right) translations on a function 𝜆𝓍: 𝐾 ⟶ 𝐾 (resp.  𝜌𝓍: 𝐾 ⟶ 𝐾) as 

follows: 𝜆𝓍(𝑦) = 𝓍𝑦 ( resp. 𝜌𝓍(𝑦) = 𝑦𝓍).  

Definitions 1.2.18 [11]: 

1- The triple (𝐾, . , 𝜏) is called right topological semi-group where (𝐾,· ) is a 

semi-group, and (𝐾, 𝜏) is a topological space, if for all 𝓍 ∊ 𝐾, 𝜌𝓍 ∶  𝐾 → 𝐾 is 

continuous. 

2- The triple (𝐾, . , 𝜏) is called left topological Semi-group where (𝐾,· ) is a 

semi-group, and (𝐾, 𝜏) is a topological space, if for all 𝓍 ∊ 𝐾, 𝜆𝓍 ∶ 𝐾 → 𝐾 is 

continuous 

3- If the triple (𝐾, . , 𝜏) is a right topological semi-group and a left topological 

semi-group then (𝐾, . , 𝜏) is a semi topological semi-group. 
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4- The triple (𝐾, . , 𝜏) is topological semi-group where (𝐾,· ) is a semi-group, 

and (𝐾, 𝜏) is a topological space, if  ∙ ∶ 𝐾 × 𝐾 → 𝐾 is continuous. 

Definition 1.2.19 [11]: We define the topological center of the semi-group 

𝐾 denoted by 𝛬(𝐾)  which is define as follows: 𝛬(𝐾) = {𝓍 ∊ 𝐾: 𝜆𝓍 is 

continuous}, where 𝐾 be a right topological semi-group. 

Note 1.2.20: The center 𝛬(𝐾) is itself a semi-subgroup of 𝐾. Moreover 

𝛬(𝐾) = 𝐾 if and only if 𝐾 is semi-topological semi-group. 

 

Definition 1.2.21 [18]: A topological space 𝑋is Hausdorff (𝑇2-spaces) if for 

every 𝑥, 𝑦 ∈  𝑋 with 𝑥 ≠  𝑦, there exist disjoint open subsets 𝑈, 𝑉 of 𝑋 such that 

𝑥 ∈  𝑈 and 𝑦 ∈  𝑉. 

Zorn’s Lemma 1.2.22 [5]:If (𝐾, ≤) is a partially ordered set such that any 

increasing chain 𝑘1 ≤ ··· ≤ 𝑘𝑖  ≤ ··· has a supremum in 𝐾, then 𝐾 itself has a 

maximal element. 

The next theorem it is a fundamental important theorem that is related the 

compact right topological semi-group corresponding with the idempotent. 

Theorem 1.2.23 [11]: Let 𝐾 be a Hausdorff compact right topological semi-

group. Then 𝐾 contains at least one idempotent. 

Proof: 

Define the set 𝒲 = {𝑌 ⊆ 𝐾: 𝑌 ≠ ∅, 𝑌 is compact and 𝑌 ∙ 𝑌 ⊆  𝑌} which is the 

set of compact sub semi-groups of 𝐾. Note that 𝐾 ∈ 𝒲 , So 𝒲 ≠  ∅. Let 𝒥 be a 

chain in 𝒲. Since 𝐾 is a Hausdorff consequently 𝒥 is a collection of closed 

subsets from the compact space 𝐾. Hence, it has finite intersection property. So 

∩ 𝒥 ≠ ∅ which is trivially compact and semi-group. 
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Implies ∩ 𝒥 ∈  𝒲. So by Zorn’s Lemma 𝒲 has a minimal member say 𝐵. We 

need to show 𝐵 is one member of 𝒲.  

Let 𝐴 = 𝐵𝑏 where 𝑏 ∈ 𝐵 then 𝐴 ≠ ∅. Since 𝐴 = 𝜌𝑏[𝐵], then 𝐴 is the continuous 

image of a compact space, hence it is compact.  

Also 𝐴𝐴 = 𝐵𝑏𝐵𝑏 ⊆ 𝐵𝐵𝐵𝑏 ⊆ 𝐵𝑏 = 𝐴, thus 𝐴 ∈ 𝒲. Since 𝐴 = 𝐵𝑏 ⊆ 𝐵𝐵 ⊆

𝐵 and 𝐵 is minimal of 𝒲, so 𝐴 = 𝐵. Let 𝐶 = {𝑥 ∈ 𝐵: 𝑥𝑏 = 𝑏}. Note that 𝑏 ∈

𝐵 = 𝐵𝑏, then 𝐶 ≠ ∅. Also, since 𝐶 = 𝐵 ∩ 𝜌 𝑏
−1 [{𝑏}], so 𝐶 is closed and implies 

its compact. Now given 𝓍, 𝑐 ∈ 𝐶 one get 𝓍𝑐 ∈ 𝐵𝐵 ⊆ 𝐵 and 𝓍𝑐𝑏 = 𝓍𝑏 =

𝑏 so 𝓍𝑐 ∈ 𝐶. Thus 𝐶 ∈ 𝒲. Since 𝐶 ⊆ 𝐵 and 𝐵 is minimal, Then 𝐶 = 𝐵 , so 𝑏 ∈

𝐶 and so 𝑏𝑏 = 𝑏. 

Corollary 1.2.24 [11]: If 𝐾 be a compact right topological semi-group. Then 𝐾 

has a minimal left ideal. More generally all-minimal left ideals in 𝐾 will be 

closed and have an idempotent.  

Proof:  

Suppose ℱ be a left ideal of 𝐾 and let 𝓍 ∈ ℱ. Since we have Hausdorff space, 

then 𝐾𝓍 =  𝜌𝓍(𝐾) is a closed compact left ideal in ℱ. It follows any minimal 

left ideal is closed. By using the proof of Theorem (1.2.23), we have that any 

minimal left ideal has an idempotent. To complete the proof, we need to show 

that this satisfying for any left ideal of 𝐾 contains a minimal left ideal. Let ℱ be 

a left ideal of 𝐾 and consider a set ℋ = {𝑌: 𝑌 is a closed left ideal of 𝐾 and 𝑌 ⊆

ℱ} which is partially ordered by inclusion. Note ℋ ≠ ∅ since at least we have a 

left ideal 𝐾𝓍. Applying Zorn’s Lemma, ℋ has a minimal left ideals 𝐿. Since 𝐿 

is a minimal among these left closed ideals in ℱ, also since every left ideal 

contains a closed left ideal. Therefore 𝐿 is a minimal left ideal. 
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1.3 A Filter and an Ultra-filter 

Definition 1.3.1 [26]: Let 𝐾 be any set, a filter on a set 𝐾 is a non-empty set 𝜇 

with the following properties: 

1- ∅ ∉ 𝜇. 

2- If 𝒫, 𝓆 ∈  𝜇 then 𝒫 ∩ 𝓆 ∈ 𝜇. 

3- If 𝒫 ∈ 𝜇 and 𝒫 ⊆ 𝓆 ⊆ 𝐾 then 𝓆 ∈ 𝜇. 

 

Example 1.3.2: Consider the set 𝜇 to be a neighborhood of a point 𝑎 in a 

topological space 𝑋. Then 𝜇 is a filter.  

1- It's clearly that for any neighborhood of a point 𝑎 say 𝓆 =  (𝑎−∈, 𝑎+∈) we 

have ∅ ∉ 𝜇. 

2- Let 𝓆 = [𝑎 −
∈

2
, 𝑎 +

∈

2
], 𝒫 = [𝑎 −

∈

4
, 𝑎 +

∈

4
] ∈ 𝜇  then  

          𝓆 ∩ 𝒫 = [𝑎 −
∈

4
, 𝑎 +

∈

4
] ∈ 𝜇.  

3- Take 𝓆 = [𝑎 −
∈

4
, 𝑎 +

∈

4
] ∈ 𝜇, and 𝒫 = [𝑎 −

∈

2
, 𝑎 +

∈

2
] be a neighborhood for 

some point b, such that [𝑎 −
∈

4
, 𝑎 +

∈

4
] ⊆ [𝑎 −

∈

2
, 𝑎 +

∈

2
] ⊆  𝐾 then [𝑎 −

∈

2
, 𝑎 +

∈

2
] ∈ 𝜇.  

 

Remarks 1.3.3 [4]: 

1- The union of two filters on a set need not be a filter, for the counter example 

see example (2.1.4) (ii) in [4].  

2- The intersection of all filters on 𝐾 is the filter {𝐾} which is the weakest filter 

on 𝐾. 
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In the next following definition, we will introduce another important type of 

filter.   

Definition 1.3.4 [26]: A filter 𝜇 on a set 𝐾 is called an ultra-filter if it is not 

properly contained in any other filter on 𝐾. 

 

Note 1.3.5 [8]: A filter 𝜇 on 𝐾 is an ultra-filter if and only if for every 𝐴 ⊆ 𝐾 

either 𝐴 ∈ 𝜇 or 𝐴𝑐 ∈ 𝜇. 

 

We record immediately the following very simple but also very useful fact 

about ultra-filters. 

Example 1.3.6: 5  : Let 𝐾 = {𝑎, 𝑏, 𝑐} 

𝜇1 = {𝐾} , 𝜇2 = {{𝑎, 𝑏}, 𝐾}, 𝜇3 = {{𝑏, 𝑐}, 𝐾}, 𝜇4 = {{𝑐, 𝑎}, 𝐾}, 

𝜇5 = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, 𝐾}, 𝜇6 = {{𝑎, 𝑏}, {𝑏, 𝑐}, 𝐾},  

𝜇7 = {{𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, 𝐾}, 𝜇8 = {{𝑐}, {𝑐, 𝑎}, {𝑏, 𝑐}, 𝐾} 

The filter 𝜇5, 𝜇7 and  𝜇8 are an ultrafilter on 𝐾 = {𝑎, 𝑏, 𝑐} since there are no filter 

on 𝐾 stecictly fine than  𝜇5, 𝜇7 and 𝜇8. 

 

Remark 1.3.7 [11]: Let 𝐾 be a set and let 𝜇 and 𝜐 be two ultra-filters on 𝐾. Then 

𝜇 = 𝜐  if and only if 𝜇 ⊆  𝜐. 

Remark 1.3.8: Let 𝐾 be a non-empty set and 𝜇 be a filter on 𝐾 then by definition 

for every 𝓆 ⊆ 𝐾 either 𝓆 ∈ 𝜇 or 𝐾\𝓆 ∈ 𝜇.   
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Definition 1.3.9 [26]: A filter 𝜇 on a set 𝐾 is principal if there is a non-empty 

set 𝑋 ⊆ 𝐾, such that 𝜇 = {𝐴 ⊆ 𝐾: 𝑋 ⊆  𝐴}. Otherwise, 𝜇 is a non-principal. 

 

Remark 1.3.10 [11]: Every ultra-filter on a finite set 𝐾 is principal. Moreover, 

no principal ultra-filter is any ultra-filter on infinite set. 

 

1.4 Topological Space on set 𝜷ℕ 

In this section, we will define a topology on the set of ultra-filters on a special 

case for the set of natural number ℕ and establish some of the properties. This 

will lead us to define the stone-Čech compactification space on ℕ. 

 

Definition 1.4.1: Let ℕ be a discrete topological space of natural number ℕ. We 

define the set of 𝛽ℕ = { 𝓆: 𝓆 is an ultra-filter on ℕ} that is the set of all ultra-

filters on a set ℕ. 

 

We will define a topology on the set of 𝛽ℕ by describing a base explicitly and 

we shall be thinking of the ultra-filters as a point in this topology space 𝛽ℕ. 

Definition 1.4.2: Let ℕ be a discrete topological space we define the set.   

1- For any ℳ subset of ℕ,  ℳ̂ = {𝓆 ∈ 𝛽ℕ: ℳ ∈ 𝓆}, where 𝓆 is an ultra-filter 

on ℕ. 

2- Let 𝑚 ∈ ℕ, then 𝑒(𝑚) = {ℳ ⊆ ℕ, 𝑚 ∈ ℳ}. 
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Lemma 1.4.3: For each 𝑚 ∈ ℕ, 𝑒(𝑚) is the principal ultra-filter corresponding 

to 𝑚 on the other word all ultra-filters generated from ℕ are principal. 

Proof:  

       First we need to show 𝑒(𝑚) is itself a filter. 

1- Let ℋ, ℬ ∈ 𝑒(𝑚), then by definition of 𝑒(𝑚) above there is 𝑚 ∈ ℋ and ℬ ∈

ℋ then ℋ ∩ ℬ ≠ ∅. 

2- Let ℋ ∈ 𝑒(𝑚)  and ℬ be any set such that ℋ ⊆ ℬ ⊆ ℕ. Then 𝑚 ∈ ℋ ⊆  ℬ. 

Immediately by the Definition (1.4.2) ℬ ∈ 𝑒(𝑚). 

3- By definition of 𝑒(𝑚), we have ∅ ∉ 𝑒(𝑚). 

Hence 𝑒(𝑚) is a filter, and by the Definition (1.4.2) 𝑚 ∈ ℋ ∈ 𝑒(𝑚) then 𝑚 ∉

ℋc implies  ℋc ∉ 𝑒(𝑚). Subsequently 𝑒(𝑚) is ultra-filter by Note (1.3.5), 

which is a principle.  

 

In the next proposition, we illustrate some properties of the set we define above.  

Proposition 1.4.4 [10]: For any two sets ℳ ⊆ ℕ and ℬ ⊆ ℕ. ℳ̂ and ℬ̂ have the 

following properties which are holds: 

1- ℳ̂ = ∅ if and only if ℳ = ∅. 

2- ℳ̂ ⊆ ℬ̂ if and only if ℳ ⊆ ℬ. 

3- ℳ ∩ ℬ̂ = ℳ̂ ∩ ℬ̂. 

4- ℳ ∪ ℬ̂ = ℳ̂ ∪ ℬ̂. 

5- ℳ 𝑐̂ = (ℳ ̂ )c. 

6- (ℕ ∕ ℳ)̂ = 𝛽ℕ ∕ ℳ̂. 
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Proof:  

1- Assume ℳ ≠ ∅, there exists 𝑚 ∈ ℳ. So 𝑒(𝑚) is a principle ultra-filter, leads 

to ℳ ∈ 𝑒(𝑚) this mean ℳ̂ ≠ ∅ , a contradiction.    

       Conversely, suppose ℳ = ∅. Since ∅ ∉ 𝓆 for any ultra-filter, so ℳ̂ = ∅. 

2- If ℳ ⊆ ℬ, then for 𝓆 ∈ ℳ̂, implies by definition ℳ ∈ 𝓆, so ℬ ∈ 𝓆. Hence 

𝓆 ∈ ℬ̂, so ℳ̂ ⊆ ℬ̂.   

Conversely, let ℳ̂ ⊆ ℬ̂, and suppose ℳ ⊈ ℬ. Define 𝑀∗ = ℳ\ℬ ≠ ∅. Choose 

some an ultra-filter 𝓆 such that 𝑀∗ ∈ 𝓆. Because 𝑀∗ ⊆ ℳ, then ℳ ∈ 𝓆. 

Therefore 𝓆 ∈ ℳ̂, which implies 𝓆 ∈ ℬ̂, and hence ℬ ∈ 𝓆. But ∅ = 𝑀∗ ∩ ℬ ∈

𝓆, a contradiction. 

3- Let 𝓆 ∈ ℳ ∩ ℬ̂, where 𝓆 is an ultra-filter and therefor ℳ ∩ ℬ ∈ 𝓆, which is 

equivalent  ℳ ∈ 𝓆 and  ℬ ∈ 𝓆. So by definition 𝓆 ∈ ℳ̂ and 𝓆 ∈ ℬ̂, this leads to 

be 𝓆 ∈ ℳ̂ ∩ ℬ̂. Henceℳ ∩ ℬ̂ ⊆ ℳ̂ ∩ ℬ̂. For the other direction, suppose 𝓆 ∈

ℳ̂ ∩ ℬ̂, so 𝓆 ∈ ℳ̂ and 𝓆 ∈ ℬ̂, so by definition ℳ ∈ 𝓆 and ℬ ∈ 𝓆. Implies that 

ℳ ∩ ℬ ∈ 𝓆 and so 𝓆 ∈ ℳ ∩ ℬ̂. Hence ℳ̂ ∩ ℬ̂ ⊆ ℳ ∩ ℬ̂. Therefore ℳ ∩ ℬ̂ =

ℳ̂ ∩ ℬ̂. 

4- Let 𝓆 ∈ ℳ ∪ ℬ̂, where 𝓆 is an ultra-filter and so ℳ ∪ ℬ ∈ 𝓆. Suppose 

ℳ,ℬ ∉ 𝓆, so ℳ𝑐 ∈ 𝓆 and  ℬ𝑐 ∈ 𝓆 this implies ℳ𝑐 ∩ ℬ𝑐 ∈ 𝓆. 

There fore (ℳ ∪ ℬ) ∩ ℳ𝑐 ∩ ℬ𝑐 = (ℳ ∪ ℬ) ∩ (ℳ ∪ ℬ)𝑐 ∈ 𝓆  

                                                     = ∅ ∈ 𝓆  

That is a contradiction. Hence ℳ ∪ ℬ̂ ⊆ ℳ̂ ∪ ℬ̂. Other direction, let 𝓆 ∈ ℳ̂ ∪

ℬ̂, then 𝓆 ∈ ℳ̂ or 𝓆 ∈ ℬ̂. Suppose 𝓆 ∈ ℳ̂, ℳ ∈ 𝓆.  
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Since ℳ ⊆ ℳ ∪ ℬ ⊆ ℕ, by definition of filter   ℳ ∪ ℬ ∈ 𝓆, so  𝓆 ∈ ℳ ∪ ℬ̂. 

Similarly, if 𝓆 ∈ ℬ̂. Hence ℳ ∪ ℬ̂ = ℳ̂ ∪ ℬ̂. 

5- For 𝓆 ∈ ℳ̂𝑐, so ℳ𝑐 ∈ 𝓆 and hence ℳ ∉ 𝓆. This mean 𝓆 ∈  (ℳ ̂ )𝑐and so 

ℳ̂𝑐 ⊆ (ℳ̂)
𝑐
. Now for 𝓆 ∈ (ℳ̂)𝑐, 𝓆 ∉ ℳ̂. This mean ℳ ∉ 𝓆 so ℳ𝑐 ∈ 𝓆. So 

𝓆 ∈ ℳ̂𝑐 and (ℳ̂)
𝑐

⊆ ℳ̂𝑐. Therefore ℳ 𝑐̂ = (ℳ ̂ )c.  

6- Note (ℕ ∕ ℳ)̂ = {𝓆 ∈ 𝛽ℕ: ℳc ∈ 𝓆}, this leads to ℳ ∉ 𝓆 and so 𝓆 ∉ ℳ̂ 

implies 𝓆 ∈ 𝛽ℕ ℳ̂⁄ . Conversely, let 𝓆 ∈ 𝛽ℕ ℳ̂⁄ = {𝓆 ∈ 𝛽ℕ: ℳ ∉ 𝓆}. So ℳ ∉

𝓆 implies that ℳ𝑐 ∈ 𝓆, then 𝓆 ∈ (ℕ ∕ ℳ)̂ . 

 

Theorem 1.4.5 [11]: Let 𝐷 be a discrete set and let 𝐴 be a subset of 𝑃(𝐷) which 

has the finite intersection property. Then there is an ultra-filter 𝜇 on 𝐷 such that 

𝐴 ⊆ 𝜇. 

 

The next theorem it’s in [11] but we will reprove it for our purpose in special 

case with the discrete set of natural numbers.  

Theorem 1.4.6: Let ℕ a set of natural numbers, then 𝛽ℕ is a compact Hausdorff 

space. 

Proof: 

Suppose that 𝒫 and 𝓆 be two distinct ultra-filter elements of 𝛽ℕ. If ℳ ∈ 𝒫\𝓆 

then ℳc = ℕ\ℳ ∈ 𝓆. Then ℳ̂ and ℕ ∕ ℳ̂ are disjoint open sets subsets of 𝛽ℕ 

containing 𝒫 and 𝓆 respectively. Hence, 𝛽ℕ is Hausdorff space. Now, for 

compactness of 𝛽ℕ we need to show that every collection of closed sets of ℕ 

satisfies the finite intersection property has non- empty intersection.  
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Note that the set of the form ℳ̂ is the stone set ℳ which acts as both an open 

and closed sets bases because (ℕ ∕ ℳ)̂ = 𝛽ℕ ∕ ℳ̂.  

To prove 𝛽ℕ is a compact we will show that the family ℋ = {the stone set ℳ̂ 

with finite intersection property} has non-empty intersection. Let ℬ =  {ℳ ⊆

ℕ: ℳ̂ ∈ ℋ}. If 𝐹 ∈ 𝓅𝑓(ℬ) = {𝐹: ∅ ≠ 𝐹𝑖 ⊆ ℬ, 𝑖 = 1,2, … , 𝑛, and 𝐹 is finite}, this 

mean for each ℳ𝑖 ∈ 𝐹𝑖, ℳ̂𝑖 ∈ ℋ. 

From definition of ℋ there is some 𝒫 ∈∩ℳ∈𝐹 ℳ̂, and by definition of ℳ̂ we 

get ∩ 𝐹𝑖 ∈ 𝒫. Thus ∩ 𝐹𝑖 ≠ ∅ and hence ℬ has finite intersection property. So by 

Theorem (1.4.5) there is an ultra-filter 𝓆 ∈ 𝛽ℕ such that ℬ ⊆ 𝓆, and so 𝓆 ∈∩ ℋ. 

Therefore 𝛽ℕ is compact.  

 

Lemma 1.4.7 [11]: The set of the form ℳ̂ are the clopen subset of 𝛽ℕ. 

Proof:  

Based on the previous theorem, we say ℳ̂ is a base of open and closed set in 

𝛽ℕ, so ℳ̂ is clopen. We will try to show that any clopen subset of 𝛽ℕ belongs 

to this kind of family. Let 𝐵 be any clopen subset of 𝛽ℕ. Let ℋ = {ℳ̂: ℳ ⊆

ℕ and ℳ̂ ⊆ 𝐵}. Since ℋis a collection of a basis of an open set ℳ̂, so ℋ is open 

cover of 𝐵, but 𝐵 is closed subset of a compact space 𝛽ℕ. Therefore, 𝐵 is a 

compact. Pick a finite subfamily 𝒥 of ℕ such that 𝐵 =∪ℳ∈ 𝒥 ℳ̂, so by using 

Proposition (1.4.4 part 4) we have 𝐵 =∪ ℳ̂. 
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Theorem 1.4.8: A map 𝑒: ℕ ⟶ 𝛽ℕ where 𝑒 is a one to one and 𝑒[ℕ] is a dense 

subset of 𝛽ℕ which its points are precisely the isolated points of 𝛽ℕ. 

Proof:  

Let 𝑎 ≠ 𝑏 ∈ ℕ, so 𝑏 ∉ {𝑎} implies {𝑎} ∉ 𝑒(𝑏), but, 𝑒(𝑏) is an ultra-filter then 

{𝑎}𝑐 = ℕ\ {𝑎} ∈ 𝑒(𝑏)\𝑒(𝑎). Hence 𝑒(𝑎) ≠ 𝑒(𝑏). Therefore, 𝑒 is one to one.  

To show 𝑒[ℕ] is a dense subset on 𝛽ℕ. We need to show 𝑒[ℕ] has its point and 

its limit point of 𝑒[ℕ]. So we will try to show if 𝒫 is a point in 𝛽ℕ is a limit point 

of 𝑒[ℕ] if every neighborhood of 𝒫 contains at last one point of 𝑒[ℕ] different 

from 𝒫 itself. Let ℳ̂ be a basic open subset of 𝛽ℕ, by definition of ℳ̂ then 

ℳ ≠ ∅. Note that any 𝑎 ∈ ℳ satisfy 𝑒(𝑎) ∈ 𝑒[ℕ] ∩ ℳ̂ and so 𝑒[ℕ] ∩ ℳ̂ ≠ ∅ 

which mean 𝑒[ℕ] has its limit point. Hence 𝑒[ℕ] is a dense in 𝛽ℕ. 

Finally, to show the points of 𝛽ℕ are isolated. Note for any 𝑎 ∈ ℕ, 𝑒(𝑎) is 

isolated in 𝛽ℕ because {𝑒(𝑎)} = {𝑎̂} is an open subset of 𝛽ℕ whose only 

member is 𝑒(𝑎). Then by definition of isolated then 𝑒(𝑎) is an isolated point. 

 

The following definition is defined an operation on the set 𝛽ℕ that give the 

algebraic structure for our study. 

Definition 1.4.9 [20]: Let (ℕ, +) is a semi-group, for any 𝐵 ⊆ ℕ and 𝑚 ∈ ℕ we 

define 𝐵 − 𝑚 = {𝓍 ∈ ℕ: 𝑚 + 𝓍 ∈ 𝐵}. For any two ultra-filters 𝒫 and 𝓆 we 

define their sum by: 

𝒫 + 𝓆 = {𝐵 ⊆ ℕ|{𝑚 ∈ ℕ: 𝐵 − 𝑚 ∈ 𝓆} ∈ 𝒫}. 
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Example 1.4.10: Consider the two principle ultra-filters 𝒫(𝑚1) and 𝒫(𝑚2), we 

will show that 𝒫(𝑚1) + 𝒫(𝑚2) = 𝒫(𝑚1 + 𝑚2). 

Solution:  

For any 𝐵 ∈ 𝒫(𝑚1) + 𝒫(𝑚2), since{ 𝑚 ∈ ℕ: 𝐵 − 𝑚 ∈ 𝒫(𝑚2)} ∈ 𝒫(𝑚1) by 

definition 𝑚1 ∈ { 𝑚 ∈ ℕ: 𝐵 − 𝑚 ∈ 𝒫(𝑚2)}, since 𝐵 −  𝑚1 ∈ 𝒫(𝑚2) leads to 

𝑚2 ∈ 𝐵 −  𝑚1. Hence, 𝑚1 + 𝑚2 ∈ 𝐵. So, 𝐵 ∈ 𝒫(𝑚1 + 𝑚2).    

The other direction 𝐵 ∈ 𝒫(𝑚1 + 𝑚2) by definition 𝑚1 + 𝑚2 ∈ 𝐵. We get 𝑚2 ∈

𝐵 −  𝑚1.So, 𝐵 −  𝑚1 ∈ 𝒫(𝑚2). This leads to have 𝑚1 ∈ { 𝑚 ∈ ℕ: 𝐵 − 𝑚 ∈

𝒫(𝑚2)}, then { 𝑚 ∈ ℕ: 𝐵 − 𝑚 ∈ 𝒫(𝑚2)} ∈ 𝒫(𝑚1). Hence, 𝐵 ∈ 𝒫(𝑚1) +

𝒫(𝑚2).   

 

Lemma 1.4.11: The operation + that is defined on 𝛽ℕ is a binary operation as 

well as associative.   

Proof: 

Let 𝒫 and 𝓆 ∈ 𝛽ℕ. First, we need to show 𝒫 + 𝓆 ∈ βℕ. By showing 𝒫 + 𝓆 is 

an ultra-filter. It is clear that by definition ∅ ∉ (𝒫 + 𝓆) and ℕ ∈ (𝒫 + 𝓆). 

Suppose  𝐴, 𝐵 ∈ (𝒫 + 𝓆). Then 𝐴 ∩ 𝐵 − 𝑚 ∈ 𝒫 iff 𝐴 − 𝑚 ∈ 𝒫 and 𝐵 − 𝑚 ∈

𝒫. Therefore, { 𝑚 ∈ ℕ: (𝐴 ∩ 𝐵 − 𝑚) ∈ 𝒫} = { 𝑚 ∈ ℕ: 𝐴 − 𝑚 ∈ 𝒫} ∩ {𝑚 ∈

ℕ: 𝐵 − 𝑚 ∈ 𝒫}. But 𝐴, 𝐵 ∈ 𝒫 + 𝓆, so { 𝑚 ∈ ℕ: 𝐴 − 𝑚 ∈ 𝒫} ∈ 𝓆 and {𝑚 ∈

ℕ: 𝐵 − 𝑚 ∈ 𝒫} ∈ 𝓆, we get { 𝑚 ∈ ℕ: (𝐴 ∩ 𝐵 − 𝑚) ∈ 𝒫} ∈ 𝓆 and 𝐴 ∩ 𝐵 ∈ 𝒫 +

𝓆. Suppose 𝐴 ∈ 𝒫 + 𝓆 and 𝐴 ⊆ 𝒞 ⊆ ℕ. Then 𝐴 − 𝑚 ⊆ 𝒞 − 𝑚 for all 𝑚 ∈ ℕ. 

So 𝐴 − 𝑚 ∈ 𝒫 implies 𝒞 − 𝑚 ∈ 𝒫. Thus { 𝑚 ∈ ℕ: 𝐴 − 𝑚 ∈ 𝒫} ⊆ { 𝑚 ∈

ℕ: 𝒞 − 𝑚 ∈ 𝒫} and { 𝑚 ∈ ℕ: 𝒞 − 𝑚 ∈ 𝒫} ∈ 𝓆. Therefore 𝒞 ∈ 𝒫 + 𝓆. We want 

to show that 𝒫 + 𝓆 is an ultra-filter, let 𝐴 ⊆ ℕ with 𝐴 ∉ 𝒫 + 𝓆.  
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Thus, { 𝑚 ∈ ℕ: 𝐴 − 𝑚 ∈ 𝒫} ∉ 𝓆 and so { 𝑚 ∈ ℕ: 𝐴 − 𝑚 ∉ 𝒫} ∈ 𝓆. So we will 

get { 𝑚 ∈ ℕ: 𝐴𝑐 − 𝑚 ∈ 𝒫} = { 𝑚 ∈ ℕ: (𝐴 − 𝑚)𝑐 ∈ 𝒫} = { 𝑚 ∈ ℕ: 𝐴 − 𝑚 ∈

𝒫}𝑐 ∈ 𝓆. Therefor, 𝐴𝑐 ∈ 𝒫 + 𝓆. This shows that 𝒫 + 𝓆 is an ultra-filter. 

Now, for associative part for our operation. 

Let 𝐴 ⊆ ℕ. Then 𝐴 ∈ 𝒫 + (𝓆 + 𝓇) iff { 𝑚 ∈ ℕ: ( 𝐴 − 𝑚) ∈  𝒫} ∈ 𝓆 + 𝓇 and 

for more clarity iff {𝓃 ∈ ℕ: ({𝑚 ∈ ℕ: ( 𝐴 − 𝑚) ∈  𝒫 } – 𝓃}  ∈  𝓆 } ∈ 𝓇. Note 

{𝑚 ∈ ℕ: (𝐴 − 𝑚) ∈ 𝒫 } – 𝓃 = {𝑚 − 𝓃: ( 𝐴 − 𝑚) ∈ 𝒫 }  

                                          = {𝑚 ∈ ℕ: (( 𝐴 − 𝓃) − 𝑚 ) ∈  𝒫 }.  

So, 𝐴 ∈  𝒫 + (𝓆 + 𝓇)  ⟺ {𝓃 ∈ ℕ: (( 𝐴 − 𝓃) − 𝑚 ) ∈ 𝒫 } ∈ 𝓆 } ∈ 𝓇 iff {𝓃 ∈

ℕ: ( 𝐴 − 𝓃) ∈ 𝒫 + 𝓆 } ∈ 𝓇 iff 𝐴 ∈ (𝒫 + 𝓆) + 𝓇.    

 

Theorem 1.4.12: For any 𝒫 ∈ 𝛽ℕ, the map ℷ𝒫: 𝛽ℕ ⟶ 𝛽ℕ that is given by 

ℷ𝒫(𝓆 ) = 𝒫 + 𝓆 is continuous. 

Proof:   

      We show that the inverse image of a basic open set is open. Indeed,  

                                 ℷ𝒫
−1( ℳ̂) = {𝓆 ∈ 𝛽ℕ: ℷ𝒫(𝓆) ∈ ℳ̂} 

                                                   = {𝓆 ∶ 𝒫 + 𝓆 ∈ ℳ̂ }  

                                                   =  {𝓆 ∶ ℳ ∈ 𝒫 + 𝓆}  

                                                   =  {𝓆 ∶  {𝑛 ∶  ℳ −  𝑛 ∈  𝒫}  ∈  𝓆}  

                                                   =  {𝑛 ∶  ℳ −  𝑛 ∈  𝒫}̂  . 

     Therefore, that ℷ𝒫 is continuous. 
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Lemma 1.4.13 [8]: (Idempotent lemma) There is element 𝒫 ∈ 𝛽ℕ with 𝒫 +

𝒫 = 𝒫.  

Proof:  

Suppose that ℬ be the set of compact semi-groups which are contained in 𝛽ℕ 

.Because 𝛽ℕ ∈ ℬ is non-empty. By inclusion, it is partially ordered. Every chain 

𝐴 has ⋂𝐴∈𝐴𝐴 as a non-empty lower bound (it is compact and non-empty since 

all the 𝐴 ’s are compact and it is easy to be a semi-group). By Zorn's lemma we 

have a minimal compact semi-group 𝐿. We claim that any 𝒫 ∈ 𝐿 is idempotent.  

We first observe that 𝐿 + 𝒫 is a compact (by left continuity of addition semi-

group). If 𝒫1 + 𝒫 and 𝒫2 + 𝒫 are elements of 𝐿 + 𝒫 then so is (𝒫1 + 𝒫) +

(𝒫2 + 𝒫) = (𝒫1 + 𝒫 + 𝒫2 ) + 𝓆 . Since 𝐿 + 𝒫 ⊆ L we have 𝐿 +𝒫 = 𝐿 by 

minimality. Now set 𝐶={ 𝓆 ∈ 𝐿: 𝓆 + 𝒫 = 𝒫 } because 𝐿 = 𝐿 + 𝒫, 𝐶 is non-

empty. It is compact by continuity also it is a semi-group: 𝓆1 + 𝒫 = 𝒫 and 𝓆2 +

𝒫 = 𝒫 imply (𝓆1 + 𝓆2) + 𝒫 = 𝒫, since C ⊆ 𝐿 by minimality of 𝐿, in fact 𝐶 =

𝐿 so 𝒫 ∈ 𝐶 and 𝒫 + 𝒫 = 𝒫. 
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2.1 Introduction 

In this chapter we briefly study the stone-Čech compactification, which 

is the largest compact space generated from the space. We will define it in the 

case of the set of natural numbers ℕ, and which is denoted by 𝛽ℕ. That is, 𝛽ℕ is 

the set of all ultra-filters on ℕ. The algebraic and topological properties of 𝛽ℕ 

will be used to understand and study the dynamical behavior of the system and 

present several of its applications. In addition, we introduce the concept of 

Enfolding semi-group and its theory, which we use it in the theory of 

topological dynamics. It reflects various properties of a dynamical system. We 

give some properties concerning its structure. We describe the connections 

between the algebraic and topological properties of the Enfolding semi-group 

and various properties. In addition, we introduce the concepts of 𝑲-system and 

theoretical properties related to them. 

 

2.2 Stone-Čech compactification 𝜷ℕ 

Definition 2.2.1[19]: The stone-Čech Compactification of Discrete topological 

space 𝔻 is a pair (𝜑, 𝕐) such that: 

1) 𝕐 is a compact space. 

2) 𝔻 Embedding into 𝕐 by 𝜑. 

3) 𝜑[𝔻] is dense in 𝕐, and  

 

 

 



 Chapter Two:                      Stone-Čech of 𝜷ℕ and 𝑲-System with Enfolding 

                                                                                      22 
 

4) Given any compact space 𝑊 and any continuous function 𝑓: 𝔻 ⟶ 𝑊 there is 

a continuous function 𝑔: 𝕐 ⟶ 𝑊 such that  𝑔 𝑜 𝜑 = 𝑓. 

                                                                𝕐 

 

 

 

Remark 2.2.2[19]:  

1) Any two Stone-Čech Compactifications of the same topological space 𝔻 are 

homeomorphism. 

2) The topology induced on 𝔻 as a subset of 𝕐 is the original topology of 𝔻. 

 

Note 2.2.3: We will concentrate our work on a special case when  𝔻 = ℕ, and 

next theorem shows that  𝛽ℕ is the stone-Čech compactification corresponding 

to ℕ. 

 

The next proposition can, be found in [11] as a problem, and will be given 

a proof for that. The importance of this proposition is that is one of the properties 

for 𝛽ℕ related to the finite intersection property.  

 

 

 

𝜑 𝑔 

𝔻 𝑊 
𝑓 
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Proposition 2.2.4: Let 𝑓: ℕ → 𝑊 be a continuous function where 𝑊 be a 

compact space. Then ℬ𝓆 = { 𝑓[𝐵]̅̅ ̅̅ ̅̅ : 𝐵 ∈  𝓆} has finite intersection property for 

any 𝓆 ∈ 𝛽 ℕ. 

Proof:  

Pick 𝐵1,𝐵2, …,𝐵𝓃 ∈ 𝓆. If we can show that ∩𝑗=1
𝓃 𝑓(𝐵𝑗) ≠ ∅ then we are 

finished.  

Because 𝐵1,𝐵2,𝐵3,…,𝐵𝓃 ∈ 𝓆 hence ∅ ≠ 𝑓(∩𝑗=1
𝓃 𝐵𝑗) 

                                                               ⊆∩𝑗=1
𝓃 𝑓(𝐵𝑗) 

                                                               ⊆∩𝑗=1
𝓃 𝑓(𝐵𝑗)  { 𝑓 is continuous} 

                                                               ⊆∩𝑗=1
𝓃 𝑓(𝐵𝑗)   since 𝑓(𝐵𝑗̅) ⊆ 𝑓(𝐵𝑗). 

 

Theorem 2.2.5: If ℕ is a discrete space, then the pair (𝑒, 𝛽𝑁) is the stone-Čech 

compactification of ℕ. 

Proof: 

We need to achieve the stone-Čech compactification conditions, which are: 

1) 𝛽ℕ is compact, this was proved in the Theorem (1.4.6). 

2) To show 𝑒 is an embedding: 

i) We claim that  𝑒: ℕ → 𝛽ℕ is injective. Let 𝓉 ≠ 𝑑 ∈ ℕ. By definition 𝑒(𝓉) and 

𝑒(𝑑) are two ultra-filters generated by 𝓉 and 𝑑 respectively. So {𝓉}c = ℕ\ {𝓉} ∈

𝑒(𝑑)\𝑒(𝓉). Hence, 𝑒(𝓉) ≠ 𝑒(𝑑) i.e we have a one to one condition. 

ii) Obviously, 𝑒 is continuous, because ℕ is discrete space. 
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iii) If we can show that 𝑒 is a closed map we are done. Suppose 𝐵 ⊆ ℕ be a 

closed subset and since 𝐵̂ ⊆ 𝑒[𝐵] then 𝑒[𝐵] ∩ 𝐵̂ ⊆ 𝑒[𝐵]. Also, 𝑒[𝐵] ⊆ 𝑒[𝐵] ∩

𝐵̂, since if 𝓉 ∈ 𝑒[𝐵] ⇒ 𝓉 = ( 𝑏′) = 𝑒( 𝑏′) where  𝑏′ ∈ 𝐵 ⇒ 𝐵 ∈ 𝓉 ⇒ 𝓉 ∈ 𝐵̂. 

Implies 𝑒[𝐵] = 𝑒[𝐵] ∩ 𝐵̂. 

3) To show 𝑒[ℕ] is a dense. We need to show 𝑒[ℕ] has its points and a limit 

point of 𝑒[ℕ]. So, we will try to show that if 𝓅 is a point in 𝛽ℕ which is a limit 

point of 𝑒[ℕ], then every neighborhood of 𝓅 contains at least one point of 𝑒[ℕ] 

deferent from 𝓅 itself. Let 𝐴̂ be a basic open subset of 𝛽ℕ, then 𝐴 ≠ ∅, any 𝑎 ∈

𝐴 satisfy 𝑒(𝑎) ∈ 𝑒[ℕ] ∩ 𝐴̂ and so 𝑒[ℕ] ∩ 𝐴̂ ≠ ∅ i.e. 𝑒[ℕ] has its limit point. 

Hence, 𝑒[ℕ] is a dance in 𝛽ℕ. 

4) Given a compact space 𝑊 and let 𝑓: ℕ ⟶ 𝑊 be continuous, to show there  

is a continuous function 𝑔: 𝛽ℕ ⟶ 𝑊 such that it has a commutative diagram. 

                                 

                                𝛽ℕ 

 

 

 

First, we need to define the function 𝑔. For each 𝓆 ∈ 𝛽ℕ, let 𝒜𝓆 = { 𝑓[𝐵]̅̅ ̅̅ ̅̅ : 𝐵 ∈

𝓆}. So for each 𝓆 ∈ 𝛽ℕ, by Proposition (2.2.4) 𝒜𝓆has the finite intersection 

property, and because 𝑊 is compact, so  𝒜𝓆 has non-empty intersection. Choose 

𝑔(𝓆) ∈∩ 𝒜𝓆. 

 

𝑒 𝑔 

ℕ 𝑊 

 

𝑓 
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Secondly, to show the diagram is commutative. Let 𝓃 ∈ ℕ then {𝓃} ∈ 𝑒(𝓃) =

{𝐵 ⊆ ℕ: 𝓃 ∈ 𝐵}. 

So, 𝑔(𝑒(𝓃)) ∈  𝑓[{𝓃}]̅̅ ̅̅ ̅̅ ̅̅ ̅ =  [{𝑓(𝓃)}]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

                                       = {𝑓(𝓃)} since singleton is closed. 

Immediately by definition 𝑔 𝑜 𝑒 = 𝑓. 

Finally, to show 𝑔 is continuous. Let 𝓆 ∈ 𝛽ℕ and let 𝑣 be a neighborhood of 

𝑔(𝓆) in 𝑊, and since 𝑊 is compact Hausdorff space then, 𝑊 is regular space. 

So pick a neighborhood 𝑢 of 𝑔(𝓆) with 𝑢̅ ⊆ 𝑣 by definition of regular we get a 

closed set. 

Let 𝐵 = 𝑓−1[𝑢] ∈ ℕ, we claim 𝐵 ∈ 𝓆, suppose ℕ\𝐵 ∈ 𝓆 then 𝑔(𝓆) ∈ 𝑓[ℕ\𝐵]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

and since 𝑢 is a neighborhood of 𝑔(𝓆). So 𝑢 ∩ 𝑓[ℕ\𝐵] ≠ ∅ that is a 

contradiction because 𝐵 = 𝑓−1[𝑢]. Hence 𝐵 ∈ 𝓆 then 𝓆 ∈ 𝐵̂ is a neighborhood 

of 𝓆. Claim 𝑔[𝐵̂] ⊆ 𝑣. Let 𝒫 ∈ 𝐵̂ = 𝐵̅ and suppose 𝑔(𝒫) ∉ 𝑣, then 𝑊\ 𝑢̅ is a 

neighborhood of 𝑔(𝒫) and 𝑔(𝒫) ∈ 𝑓[𝐵]̅̅ ̅̅ ̅̅ , since 𝒫 ∈ 𝐵̂ = 𝐵̅ then 𝑓(𝒫) ∈

𝑓(𝐵̅) ⊆ 𝑓(𝐵)̅̅ ̅̅ ̅̅  so (𝑊\𝑢̅) ∩ 𝑓[𝐵] ≠ ∅ that is a contradiction since 𝐵 = 𝑓−1[𝑢]. 

 

The next proposition, which is founded as an open problem, we found in 

[11]. The proof we consider is that if the two continuous maps identify on 𝑒[ℕ] 

then they will be equal. 
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Proposition 2.2.6: Let ℬ𝓆 = {𝑓[𝐴]̅̅ ̅̅ ̅̅ : 𝐴 ∈ 𝓆} be a set belong to 𝑊. For each 𝓆 ∈

𝛽ℕ,  we have ⋂ ℬ𝓆 is a singleton.  

Proof:  

By proposition (2.2.4) we show that ℬ𝓆 has a finite intersection property and 

since 𝑊 is compact, then every family of closed subsets having the finite 

intersection property has non-empty intersection. So, ⋂ℬ𝓆 ≠ ∅ , hence, there 

exists 𝓌 ∈ ⋂ℬ𝓆 such that 𝓌 is an element of all 𝑓(𝐴)̅̅ ̅̅ ̅̅  for all 𝐴 ∈ 𝓆. Now to 

show ⋂ℬ𝓆 is singleton.  

 

                                                

 

Choose 𝓌 = 𝑔(𝓆) ∈ ⋂ℬ𝓆 = ⋂{𝑓(𝐴)̅̅ ̅̅ ̅̅ : 𝐴 ∈ 𝓆}. Assume there is another element 

𝑚 ∈ ⋂ℬ𝓆. Define ℎ: 𝛽ℕ → 𝑊 such that ℎ(𝓆) = 𝑚, which is the same way how 

we construct function 𝑔. Note that 𝑔 and ℎ have the same behavior from 𝛽ℕ →

𝑊 and they will be equal if they start from ℕ because the continuous functions 

on a dense set they are equal. 

 

Proposition 2.2.7: Every left ideal in 𝛽ℕ the Stone-Čech compactification for 

the discrete set of natural numbers ℕ, contains a minimal left ideal.  

Proof: 

By the definition of a left ideal immediately 𝛽ℕ + 𝒫 is a left ideal for all 𝒫 ∈

𝛽ℕ. Let 𝓆 ∈ 𝛽ℕ + 𝒫  implies  𝛽ℕ + 𝓆 ⊆ 𝛽ℕ + 𝒫. Note that, 𝛽ℕ +

𝓆 𝑎𝑛𝑑 𝛽ℕ + 𝒫 are both compact since they are images of right translation 

ℕ 

 

𝑊 

𝑔 

𝑓 

 

𝛽ℕ 
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𝜌𝒫(𝛽ℕ) and 𝜌𝓆(𝛽ℕ). Moreover, both are closed since 𝛽ℕ is 𝑇2- space and every 

compact subset of  𝑇2-space is closed.  

We will try to show  𝛽ℕ + 𝓆 is a minimal left ideal. Consider ℛ = { 𝛽ℕ + 𝓆𝑖 a 

left closed ideal on 𝛽ℕ and 𝛽ℕ + 𝓆` ⊆ 𝛽ℕ + 𝒫}. Then ℛ ≠ ∅ since we have 

𝛽ℕ + 𝓆𝑖. So and it is partially ordered by inclusion such that {𝐾1 ⊆

𝐾2 then 𝐾1 ≤ 𝐾2}. Define 𝒞 = {𝛽ℕ + 𝓆1 ⊇ 𝛽ℕ + 𝓆2 ⊇ ∙∙∙∙∙∙∙∙∙ } be an chain. By 

the finitely intersection property ∩ (𝛽ℕ + 𝓆𝑖) ≠ ∅ which is a left closed ideal. 

Denote 𝑆 =∩ (𝛽ℕ + 𝓆𝑖) which is the lower bound of 𝒞. By Zorn’s lemma ℛ has 

a minimal left ideal 𝛽ℕ + 𝑆 among left closed ideals in 𝛽ℕ + 𝒫, i.e. if ℱ ⊆

𝛽ℕ + 𝑆 and ℱ is a left closed ideal then ℱ = 𝑆.  

To complete the proof, we need to show that 𝑆 is a minimal corresponding to all 

space. Claim every left ideal contains a left closed ideal. Let 𝐿 be a left ideal and  

𝑑 ∈ 𝐿. Therefor, 𝜌𝑑(𝛽ℕ) = 𝛽ℕ + 𝑑 ⊆ 𝐿 which is an image of compact space. 

Furthermore, it is a closed since it’s a compact subset of Hausdorff space. So, 

there exists ℱ ` a left closed ideal of 𝐿. Now ℱ ` ⊆ 𝐿 ⊆ 𝑆, i.e. ℱ ` ⊆ 𝑆 

implies ℱ ` = 𝑆. 

 

Lemma 2.2.8: The set of 𝑀(𝛽ℕ) is an ideal in 𝛽ℕ in fact which is the smallest 

ideal corresponding to 𝛽ℕ.  

Proof:  

𝑀(𝛽ℕ) ≠ ∅ since from the proposition (2.2.7) 𝛽ℕ has a minimal left ideal. Let 

𝒫 ∈ 𝑀(𝛽ℕ), 𝒫 ∈ ℱ which is one a minimal left ideal in 𝑀(𝛽ℕ), then 𝛽ℕ + 𝒫 ⊆

ℱ ⊆ 𝑀(𝛽ℕ), and so 𝑀(𝛽ℕ) is a left ideal. Similarly, for the right ideal. Hence, 

𝑀(𝛽ℕ) is an ideal. Finally, to show 𝑀(𝛽ℕ) is the smallest. First we need to 

show 𝑀(𝛽ℕ) is a minimal ideal.  
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Let an ideal 𝐿 ⊆ 𝑀(𝛽ℕ) to show 𝐿 = 𝑀(𝛽ℕ). Suppose ℱ be any minimal left 

ideal subset of 𝑀(𝛽ℕ). Then ℱ ∩ 𝐿 ≠ ∅.  

To show ℱ ∩ 𝐿 is a left ideal in 𝛽ℕ. Let 𝓍 ∈ ℱ ∩ 𝐿. Since 𝛽ℕ + 𝓍 ⊆

ℱ and 𝛽ℕ + 𝓍 ⊆ 𝐿 then 𝛽ℕ + 𝓍 ⊆ ℱ ∩ 𝐿. Since ℱ ∩ 𝐿 is a left ideal.  

By minimalists of ℱ and since ℱ ∩ 𝐿 ⊆ ℱ then ℱ ∩ 𝐿 = ℱ  

                                                                                     ⇒ ℱ ⊆ 𝐿 

                                                                                     ⇒ 𝐿 =  𝑀(𝛽ℕ) 

So, 𝑀(𝛽ℕ) is a minimal ideal. 

Finally, to show 𝑀(𝛽ℕ) is the smallest ideal . Let 𝐿 be an ideal in 𝑀(𝛽ℕ) to 

show 𝑀(𝛽ℕ) ⊆ 𝐿 we know 𝑀(𝛽ℕ)⋂𝐿 ≠ ∅.  i. e. 𝑀(𝛽ℕ)⋂𝐿 ⊆ 𝑀(𝛽ℕ). Let 𝑥 ∈

𝑀(𝛽ℕ)⋂𝐿 ⇒ 𝛽ℕ + 𝑥 ∈ 𝑀(𝛽ℕ)⋂𝐿 

⇒ 𝑀(𝛽ℕ)⋂𝐿 is an ideal 

⇒ 𝑀(𝛽ℕ)⋂𝐿 = 𝑀(𝛽ℕ)  

⇒ 𝑀(𝛽ℕ) ⊆ 𝐿. 
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2.3 Enfolding Semi-group 

In this subsection, we define the Enfolding semi-group concept and we 

study topological and algebraic properties of it. 

Definition 2.3.1[5]: Let 𝐾 be semi-group and X  be a set. Then the action of 𝐾 

on 𝑋 (simply say that 𝐾 acts on 𝑋) is a function:      

                                       𝛼 ∶  𝐾 ×  𝑋 →  𝑋 

(𝑘, 𝓍) → 𝑘𝓍  such that (𝑘𝓉)𝓍 = 𝑘(𝓉𝓍) for all 𝓍 ∈ 𝑋 and 𝑘, 𝓉 ∈ 𝐾. When 𝐾 has 

an identity say 𝑒 then 𝑒 ∙ 𝓍 = 𝓍 for all 𝑥 ∈ 𝑋.  

 

Definition 2.3.2[22]: A Dynamical System is denoted by a pair (𝐾, 𝑋 ), where 𝑋 

is a topological space, which is called phase space, that is defined as an acting on 

some group (semi-group) 𝐾 on 𝑋. The set 𝐾 ∙ 𝓍 = {𝑘 ∙ 𝓍 ∶ 𝓍 ∈ 𝑋 }, is called the 

orbit of 𝓍. We define ℒ(𝓍) to be the set of the orbit closure of 𝐾 ∙ 𝓍.  

Note that Topological Dynamics is the study of orbits for all points in 𝑋. 

 

Now we aim to define the 𝐾-system a very important aspect of dynamical 

systems, which is used as a very fundamental tool in the abstract theory of 

Topological Dynamics. 

Definition 2.3.3 [20]: A 𝑲-System is a triple (𝐾, 𝑋, 𝛼) such that 𝐾 is a semi-

group and 𝑋 is a Hausdorff compact space called a phase space on 𝐾- system, 

and 𝛼: 𝐾 × 𝑋 → 𝑋 is a continuous action of 𝐾 on 𝑋, we write 𝛼(𝑘, 𝓍) = 𝑘 ∙ 𝓍 =

𝛼𝑘 (𝓍).  

A subset 𝐴 from  𝑋 in a 𝐾-system is invariant if 𝐾. 𝐴 = {𝑡𝑎 |𝑎 ∈  𝐴, 𝑡 ∈ 𝐾} ⊆

 𝐴. 
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Definition 2.3.4[19]: A homomorphism from two 𝐾-systems (𝐾,𝑋) and (𝐾,𝑍) 

is a continuous surjection function 𝛼: 𝑋 ⟶ 𝑍 satisfying 𝛼(𝑘𝑎) = 𝑘𝛼(𝑎) for all 

 𝑘 ∈ 𝐾 and 𝑎 ∈ 𝑋. If additionally 𝛼 is one to one, then it is called an 

isomorphism of 𝐾-systems. 

 

Next, we will provide our main definition in this work, this will be used 

in the following results we give in the rest of our section. 

The main concepts in our research will be the next definition. 

 

Definition 2.3.5: Let 𝑋 be a compact Hausdorff topological space and 

𝑋𝑋  denote the collection of all continuous functions from 𝑋 to itself, which is a 

semi-group under the composition, provided with the product topology, or the 

topology point wise convergence. Let 𝑇 = {𝑓: 𝑋 → 𝑋} be a subset contained in 

𝑋𝑋 . Then the closure of a set 𝑇 is called an Enfolding semi-group of 𝑇 denoted 

by ℇ(𝑇), given with the topology of point wise convergent. In particular, if 

(𝐾, 𝑋, 𝛼) is a 𝐾-systems then the closure of the set {𝛼𝑘: 𝑘 ∈ 𝐾} in 𝑋𝑋 is denoted 

by ℇ(𝐾, 𝑋) will refer to the Enfolding semi-group of the 𝐾-systems.  

 

The motivation for studying the Enfolding semi-group is to understand the 

algebraic properties of a 𝐾-system. 

We think the rarity and difficulty of examples of Enfolding semi-groups 

is that these objects are usually non-metrizable. 
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The following example is in [22], but it serves the desired purpose.  

Example 2.3.6: For each 𝓃 ∈ ℕ,  

let 𝑋𝓃 = {(𝑟,𝜃) = (
1

2𝓃
,

2𝑥𝜋

2𝓃
(𝑚𝑜𝑑 2𝜋)) :  𝑥 = 0, 1, 2,……..} and  

𝑋 = ⋃ 𝑋𝓃𝓃∈ℕ ∪ {(0,0)} as a subspace of 𝑅2.  

                         Define 𝑓: 𝑋 → 𝑋 as 𝑓(𝑟, 𝜃) = (𝑟, 𝜃 + 2𝜋𝑟(𝑚𝑜𝑑 2𝜋)). 

For any 𝑠 ∈ ℕ, 

                                         𝑓𝑠 (
1

2𝓃
 , 𝜃) = (

1

2𝓃
, 𝜃 +

2𝑠𝜋

2𝓃
(𝑚𝑜𝑑2𝜋)). 

Let 𝑠 be a 2 −adic integer. Suppose  𝑠 = 2𝑠1 + 2𝑠2 +∙∙∙∙∙∙∙ +2𝑠𝑟 then 

𝑓𝑠 (
1

2𝓃
, 𝜃) = (

1

2𝓃
, 𝜃 + 2𝜋 (

2𝑠1+2𝑠2+∙∙∙+2𝑠𝑟

2𝓃 ) (𝑚𝑜𝑑 2𝜋)) = (
1

2𝓃
, 𝜃 + 2𝜋 (

1

2𝓃−𝑠1
+

1

2𝓃−𝑠2
+∙∙∙∙∙∙ +

1

2𝓃−𝑠𝑟
) (𝑚𝑜𝑑 2𝜋)). 

Let 𝑎 =∙∙∙∙∙ 10101 = 1 +  4 +  16 +........ be a 2 −adic integer. Then for the 

function 𝑓𝑎 defined as 𝑓𝑎(𝑟, 𝜃) = (𝑟, 𝜃 + 2𝑥𝜋𝑎𝓃(𝑚𝑜𝑑(2𝜋)), Where 𝑎2𝑥 =
1

22
+

1

24
+

1

26
+∙∙∙∙ +

1

22𝑥−2
+

1

22𝑥
  and 𝑎2𝑥+1 =

1

2
+

1

23
+

1

25
+∙∙∙∙ +

1

22𝑥−1
+

1

22𝑥+1
. We see 

that 𝑓𝑎 will be a member of ℇ(𝑋) corresponding to 𝑎. 

 

Definition 2.3.7 [26]: A net in a set 𝑋 is a map 𝑆: 𝐷 → 𝑋 where 𝐷 is discrete 

set. 

Note 2.3.8 [14]: A net 𝑆 convergent to 𝑥 ∈ 𝑋 if for any open set 𝑈 containing 𝑥, 

there is 𝑑0 ∈ 𝐷, ∀ 𝑑 ≥ 𝑑0 ∶ 𝑥𝑑 ∈ 𝑈. 
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 The next Theorem it will help us to prove that the Enfolding semi-group is a 

right-topological semi-grou 

Theorem 2.3.9: Let 𝐷 be a topological space and 𝑉 represent the product 

topology on 𝐷. Then (𝐷𝐷 ,∘, 𝑉) is a right-topological semi-group. Furthermore, 

for each ℎ ∈ 𝐷𝐷 , ℎ is continuous if and only if 𝜆ℎ is continuous where 𝜆ℎ (𝑔) =

ℎ ∘ 𝑔 = 𝜌𝑔(ℎ).  

Proof:  

Suppose that ℎ ∈ 𝐷𝐷  , and suppose < 𝑔𝑖 >𝑖 ∈𝐼 is a net convergence to  𝑔 in the 

product topology 𝐷𝐷. Since that, a net < ℎ𝑖 >𝑖 ∈𝐼 is convergent to ℎ in 𝐷𝐷  if and 

only if < ℎ𝑖(𝑥) >𝑖∈𝐼 is convergent to ℎ(𝑥) for every 𝑥 ∈ 𝐷. Implies that, <

𝑔𝑖  (ℎ(𝑥)) >𝑖∈𝐼 convergent to 𝑔(ℎ(𝑥)) in 𝐷. Therefore, < 𝑔𝑖 ∘ ℎ >𝑖 ∈ 𝐼 is 

convergent to 𝑔 ∘ ℎ in 𝐷𝐷 and therefore 𝑔𝑖 ∘ ℎ is continuous. This show 𝜌ℎ is 

continuous. Hence, the set of all functions from 𝐷 → 𝐷 is a right-topological 

semi-group. For the second part, suppose that ℎ is continuous. Hence for every 

given net < 𝑔𝑖 >𝑖∈𝐼 convergence to 𝑔 in the product topology of 𝐷𝐷. Then <

ℎ(𝑔𝑖 (𝑥)) >𝑖∈𝐼 is convergence to ℎ(𝑔(𝑥)) for every 𝑥 ∈ 𝐷. Implies < ℎ ∘

𝑔𝑖 >𝑖∈𝐼 is convergence to ( ℎ ∘ 𝑔)(𝑥). Hence, ℎ ∘ 𝑔𝑖 is continuous, i.e. we show 

that 𝜆ℎ is continuous.  

Conversely, we suppose  𝜆ℎ is continuous. Let < 𝑥𝑖 >𝑖∈𝐼 be a net converge to 𝑥 

in 𝐷. Define 𝑔𝑖: 𝐷 ⟶ 𝐷 such that 𝑔𝑖(𝑥) = 𝑥𝑖  , ∀ 𝑖 ∈ 𝐼 and 

𝑔: 𝐷 ⟶ 𝐷 such that 𝑔(𝑥) = 𝑥. 

Therefore, < 𝑔𝑖 >𝑖∈𝐼 converges to 𝑔 in 𝐷𝐷 so, < ℎ ∘ 𝑔𝑖 >𝑖∈𝐼 converge to ℎ ∘ 𝑔. 

This means < ℎ(𝑥𝑖) >𝑖∈𝐼 converges to ℎ(𝑥) and therefore ℎ is continuous. 

 



 Chapter Two:                      Stone-Čech of 𝜷ℕ and 𝑲-System with Enfolding 

                                                                                      33 
 

 The next two results will prove that the Enfolding is a right- topological semi-

group. 

Proposition 2.3.10: On the right-topological semi-group 𝐷𝐷, let 𝐾 be a subset 

of the topological center of 𝐷𝐷. If 𝐾 is a semi-group then 𝐾̅ is a semi-group. 

Proof:  

Let 𝑚, 𝑛 ∈ 𝐾̅. Let 𝑈 be any neighborhood of 𝑚𝓃. We need to show that 𝑈 ∩

𝐾 ≠ ∅. By Theorem (2.3.9) since 𝜌𝓃 is continuous, then there exist a 

neighborhood 𝑉 of 𝑚 s.t 𝜌𝓃(𝑉) = 𝑉𝓃 ⊆ U. Since 𝑚 ∈ 𝐾̅, so 𝑉 ∩ 𝐾 ≠ ∅. Let 

𝑚1 ∈ 𝑉 ∩ 𝐾, and hence 𝜆𝑚1
(𝑛) = 𝑚1𝓃 = 𝜌𝓃(𝑚1) ∈ 𝑈. Note that 𝑚1 ∈ 𝐾 ⊆ 

center 𝐷𝐷, which implies that 𝜆𝑚1
is continuous. Moreover, there is a 

neighborhood 𝑆 of 𝓃 with 𝜆𝑚1
(𝑆) ⊆ 𝑈. Since 𝓃 ∈ 𝐾̅ then 𝑆 ∩ 𝐾 ≠ ∅. 

Let 𝓃1 ∈ 𝑆 ∩ 𝐾 and 𝜆𝑚1
(𝓃1) ∈ 𝜆𝑚1

(𝑆) ⊆ 𝑈. Then 𝑚1𝓃1 = 𝜆𝑚1
(𝓃1) ∈ 𝑈 

                                            ⟹ 𝑚1𝓃1 ∈ 𝐾  

                                            ⟹ 𝑈 ∩ 𝐾 ≠ ∅. 

Hence, 𝑚𝓃 ∈ 𝐾̅. 

 

Lemma 2.3.11: The Enfolding semi-group ℰ(𝑇) is a compact right-topological 

semi-group. 

Proof:  

Since 𝑋 is compact. Then by Tychonoff’s theorem, 𝑋 × 𝑋 × 𝑋 … is compact. 

But, 𝑇 ⊆ 𝑋 × 𝑋 × 𝑋 … and ℰ(𝑇) is a closed subset of compact Hausdorff space. 

Therefore, ℰ(𝑇) = 𝑇̅ ⊆   𝑋 × 𝑋 ×  𝑋 …  is a compact Hausdorff space.  
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We need to show that 𝜌𝑓 is continuous on ℰ(𝑇). Let 𝑓 ∈ ℰ(𝑇), we need to show 

𝜌𝑓 is continuous on ℰ(𝑇). To do that we will first show 𝜌𝑓 is continuous on 𝑇. 

Let ⟨𝑔𝑖⟩𝑖∈𝐼 be a net on 𝑇 convergence to 𝑔. Since 𝑔 is a pointwise convergence, 

then for any 𝑥 ∈ 𝑋, 𝑔𝑛(𝑥) ⟶  𝑔(𝑥). Hence 𝑔𝑛(𝑓(𝑥))  ⟶  𝑔(𝑓(𝑥)). Therefore 

𝜌𝑓 (𝑔𝑛) convergence pointwise to 𝜌𝑓(𝑔). Therefore 𝜌𝑓 is continuous on the 

dense set 𝑇 and hence on its closure ℰ(𝑇). 

 

Remark 2.3.12: The algebraic structure of the Enfolding semi-group gives some 

important characterization of the dynamical system properties of the 𝐾-system 

(𝐾 , 𝑋 ). 

1)  𝛷 ∶ 𝛽𝐾 → ℰ(𝐾, 𝑋) is both a semi-group homomorphism and a 𝐾-system. 

2) The map 𝜓 ∶ ℰ(𝐾, 𝑋) → 𝑋 defines as 𝓉 → 𝓉𝑥 is a 𝐾-system homomorphism 

for all 𝑥 ∈ 𝑋. 

3) The map 𝛷: 𝛽𝐾 →  ℰ(𝛽𝐾, 𝐾 ) is an isomorphism. 

4) Let 𝜑 ∶ (𝐾, 𝑋 )  → (𝐾, 𝑍 ) be a homomorphism of 𝐾-system, then 𝜑(𝓉𝑥)  =

𝓉𝜑(𝑥) for all 𝑥 ∈  𝑋 and 𝓉 ∈ 𝛽𝐾. 

 

Definition 2.3.13: Let (𝐾, 𝑋, 𝛼) be a 𝐾- system and  ℰ(𝐾, 𝑋) be its Enfolding 

semi-group. Then for a non-empty set 𝐼 ⊆ ℇ(𝐾), which is a left ideal if 

 ℰ(𝐾, 𝑋) ∙ 𝐼 ⊆ 𝐼, i.e. for ℓ ∈ 𝐼 and 𝓆 ∈ ℰ(𝐾, 𝑋) such that 𝓆ℓ ∈ 𝐼. Also, 𝐼 is called 

a right ideal if ℓ𝓆 ∈ 𝐼. Moreover, 𝐼 ∈ ℰ(𝐾, 𝑋) is an ideal if and only if 𝐼 is both 

a right and a left ideal. 
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Definition 2.3.14: A left ideal 𝐼 in an Enfolding semi-group is minimal if and 

only if 𝐼 is closed in ℰ(𝐾, 𝑋) and 𝐼 does not contain any other proper subset left 

ideal. 

Lemma 2.3.15: Let ℰ(𝐾, 𝑋)  be an Enfolding semi-group in 𝐾-sysytem (𝐾, 𝑋). 

Then any left ideal in ℰ(𝐾, 𝑋) contains a minimal left ideal. 

Proof:  

Let 𝐼 be any left ideal of ℇ(𝐾, 𝑋), and let ℬ = { 𝐽: 𝐽 is a closed left ideal of 

ℇ(𝐾, 𝑋)  and 𝐽 ⊆ 𝐼}. 

Applying Zorn’s lemma to ℬ, one gets a left ideal 𝐽 minimal among all the closed 

left ideals that are contained in 𝐼. 

 

Lemma 2.3.16: Let 𝑋 be a compact topological space then the set of Enfolding 

ℰ(𝐾, 𝑋) contains an idempotent. 

Proof: 

Let ℋ be a minimal subset of ℰ(𝐾, 𝑋) which is defined by {𝑆 ⊆ ℰ(𝐾, 𝑋), 𝑆 ≠ ∅, 

𝑆𝑆 ⊆ 𝑆, 𝑆 is compact}. Since ℰ(𝐾, 𝑋) itself satisfies these properties, so ℋ ≠ ∅. 

We claim ℋ has a minimal set of this kind. Let 𝒞 be a chain in ℋ which is a 

collection of closed subsets of ℰ(𝐾, 𝑋). This chain will satisfy the finite 

intersection-property. Therefor, ∩ 𝒞 ≠ ∅ is compact. Hence ∩ 𝒞 ∈ ℋ. By 

Zorn’s lemma, let 𝐴 be a minimal element of ℋ. 

We need to show 𝑦 ∙ 𝑦 = 𝑦, ∀ 𝑦 ∈ 𝐴 , i.e. 𝐴𝑦 = 𝐴. Take any  𝑢 ∈ 𝐴, 𝐴𝑢 ⊆ 𝐴 is 

compact since 𝐴𝑢 = 𝜌𝑢 (𝐴) which is a continuous image of a compact space. 

Let ℬ = {𝑣 ∈ 𝐴: 𝑣𝑢 = 𝑢}, then ℬ ≠ ∅ because 𝑢 ∈ 𝐴 = 𝐴𝑢 moreover, since 

ℬ = 𝐴 ∩ 𝜌𝑢
−1[{𝑢}] then ℬ is closed, this implies ℬ is compact. Given 𝓍, 𝑧 ∈ ℬ, 
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so 𝓍𝑧 ∈ 𝐴𝐴 ⊆ 𝐴 and 𝓍𝑧𝑦 = 𝓍𝑦 = 𝑦. Implies 𝓍𝑧 ∈ ℬ, and thus, ℬ ∈ ℋ. Since 

ℬ ⊆ 𝐴 and 𝐴 is minimal, thus ℬ = 𝐴, and hence 𝑢 ∈ ℬ, and so 𝑢 ∙ 𝑢 = 𝑢. 

Remark 2.3.17: Let (𝐾, 𝑋) be 𝐾-system and 𝐼 ⊆ ℰ(𝐾, 𝑋)  be a minimal ideal. 

Then the set 𝐽 of idempotent of 𝐼 is non-empty. 

Proposition 2.3.18: Let (𝐾, 𝑋, 𝛼 ) be 𝐾-system and 𝐼 ⊆ ℰ(𝐾, 𝑋) be a minimal 

ideal and 𝐽 the set of idempotent of 𝐼 then:  

1) For all 𝓆 ∈ 𝐼 and 𝑣 ∈ 𝐽, then 𝑣𝓆 = 𝓆. 

2) For all 𝑣 ∈ 𝐽 then 𝐼𝑣 is a group with identity 𝑣. 

3) The partition of 𝐼 is {𝐼𝑣: 𝑣 ∈ 𝐽}. 

Proof:  

1) Let 𝓆 ∈ 𝐼,and 𝑣 ∈ 𝐽, to prove 𝑣𝓆 = 𝓆. Then 𝑣𝐼 is an ideal subset of  𝐼. So 

𝑣𝐼 = 𝐼, there exists 𝒫 ∈ 𝐼 with 𝑣𝒫 = 𝓆. This implies 𝑣𝓆 = 𝑣𝑣𝒫 = 𝑣𝒫 = 𝓆. 

2) Suppose 𝒫 ∈ 𝐼𝑣. There exists 𝓆 ∈ 𝐼 with  𝓆𝑣 = 𝒫, then 𝒫𝑣 = 𝓆𝑣𝑣 = 𝓆𝑣 =

𝒫, so 𝑣 is both a left and right identity for 𝐼𝑣. Since 𝐼 is an ideal, and 𝒫𝐼 is an 

ideal subset of  𝐼, then 𝒫𝐼 = 𝐼. There exists 𝑟 ∈ 𝐼 with 𝒫𝑟 = 𝑣, and 𝒫(𝑟𝑣) =

(𝒫𝑟)𝑣 = 𝑣𝑣 = 𝑣.                                                               

Note that (𝑟𝒫)(𝑟𝒫) = 𝑟(𝒫𝑟)𝒫 

                                 = 𝑟(𝑣𝒫)  

                                 = 𝑟𝒫  

Hence, (𝑟𝑣)𝒫 = 𝑟𝒫 

                        = (𝑟𝒫)𝑣 = 𝑣  

This implies 𝑟𝑣 is a left and right invers of 𝒫 in 𝐼𝑣. 
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3) Let 𝓆 ∈ 𝐼, and 𝓆𝐼 is an ideal subset of 𝐼, then 𝓆𝐼 = 𝐼. Suppose 𝑆 =

{𝒫 ∈ 𝐼| 𝓆𝒫 = 𝓆} = 𝛼 𝒫
−1(𝓆) is a non-empty closed subsemi-group of 𝐼, see 

proof proposition (3.9) in [5]. 

There exists an idempotent 𝑢 ∈ 𝐽 with 𝓆𝑢 = 𝓆, so 𝓆 ∈ 𝐼𝑢. Then 𝐼=∪ {𝐼𝑣| 𝑣 ∈ 𝐽}. 

Let 𝑢, 𝑣 ∈ 𝐽 and 𝓆 ∈ 𝐼𝑣 ∩ 𝐼𝑢. So 𝓆 = 𝓆𝑢 = 𝓆𝑣 and there exists 𝑝 ∈

𝐼𝑣 with 𝑝𝓆 = 𝑣. This leads 𝑢 = 𝑣𝑢 = (𝑝𝓆)𝑢 = 𝑝(𝓆𝑢) = 𝑝𝓆 = 𝑣.  

 

The next proposition shows that if we have 𝐽 to be the set of all idempotents in 

ℰ(𝐾, 𝑋). One can define an equivalence relation ∼ on 𝐽 as 𝑢~𝑣 iff 𝑢𝑣 =

𝑣 and 𝑣𝑢 = 𝑢. Then, we say 𝑢 and 𝑣 are equivalent.  

Proposition 2.3.19: Let (𝐾, 𝑋) be a 𝐾-system. If 𝐼, 𝐽 ⊆ ℰ(𝐾, 𝑋) are minimal, 

ideals in ℰ(𝐾, 𝑋) and 𝑢2 = 𝑢 ∈ 𝐼 be an idempotent. Then there is 𝑣 ∈ 𝐽 which is 

a unique idempotent with  𝑢𝑣 = 𝑢 and 𝑣𝑢 = 𝑣. 

Proof:  

Let 𝑢2 = 𝑢 ∈ 𝐼 and 𝑢𝐽 is a closed ideal subset of 𝐼, this mean 𝑢𝐽 = 𝐼. 

Suppose  𝐴 = { 𝑗 ∈ 𝐽 | 𝑢𝑗 = 𝑢} ≠ ∅. Then 𝐴 = 𝐽 ∩ 𝛼 𝑢
−1(𝑢) is closed, and 𝐴2 ⊆

𝐴. Then there exists  𝑣2 = 𝑣 ∈ 𝐴, so 𝑢𝑣 = 𝑢. 

Similarly, there exists  𝑟2 = 𝑟 ∈ 𝐼 with 𝑣𝑟 = 𝑣. We get 𝑟 = 𝑢𝑟 = 𝑢𝑣𝑟 = 𝑢𝑣 =

𝑢. The same way 𝑣𝑢 = 𝑣. 

Now, suppose 𝛾2 = 𝛾 ∈ 𝐽 with  𝑢𝛾 = 𝑢 and 𝛾𝑢 = 𝛾. We need to show  𝑣 = 𝛾. 

Then  𝛾 = 𝛾𝑢 = 𝛾𝑢𝑣 = 𝛾𝑣. This means that  𝛾 ∈ 𝐽𝑣 ∩ 𝐽𝛾, we get 𝑣 = 𝛾, 𝑣 is 

unique. 
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3.1 Introduction 

   In previous sections, we saw that the Enfolding semi-group gives several 

measurement of the action of ℕ on 𝑋. In this chapter, we try to show that if we 

give two distinct points 𝒫 , 𝑞 ∈ 𝛽ℕ, whether there exist some element 𝓍, in the 

smallest ideal in 𝑀(𝛽ℕ) then there exists 𝓍 such that 𝒫 ∙ 𝓍 ≠ 𝓆 ∙ 𝓍. We are able 

to give an application of a product discrete countable space of two-point with a 

specific system with several conditions, some involving minimal systems, which 

are equivalent to ability to splitting 𝑝 and 𝑞 in this way. More generally, we feel 

that the investigation of the Enfolding semi-group structure of a minimal system 

is a worthy one, and interesting corresponding problems of a purely semi-group 

theoretic nature. 

 

3.2 𝑴-stenography and Minimal system  

Definition 3.2.1[11]: A continuous homomorphism 𝛼: 𝐾 → 𝐻 where 𝐾 be a 

semi topological semi-group and 𝐻 be a compact right-topological semi-group, 

(𝐻, 𝛼) is called a semi-group compactification if 𝛼(𝑘) is a dense in 𝐻 and the 

action of 𝐾 on 𝐻, (𝑘, 𝓉) ⟶  𝑘 ∙ 𝓉 = 𝛼(𝑘)𝓉 ∶ 𝐾 × 𝐻 → 𝐻 is a continuous. 

 

Note 3.2.2: In the case of the set of natural numbers set, ℕ, which is a discrete 

semi-group set with + operation, the semi-group compactification is the Stone-

Čech compactification 𝛽ℕ given with a semi-group additive extended from ℕ. 
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Definition 3.2.3: Let (ℕ, 𝑋, 𝛼) be an ℕ-system. Define 𝜑: ℕ → ℇ(ℕ, 𝑋) be a 

mapping defined by 𝜑(𝓃) = 𝛼𝓃, which gives us a semi-group compactification 

where 𝛼𝓃: 𝑋 → 𝑋 for a fixed 𝓃. Thus there exist a continuous unique semi-group 

homomorphism 𝛷: 𝛽ℕ → ℇ(ℕ, 𝑋) such that 𝛷 ∘ 𝜓 = 𝜑. 

 

                                                            𝛽ℕ 

 

  

                                                                    

 

 

Remark 3.2.4:  

a) Since the image of ℕ is dense in ℇ(ℕ, X), 𝛽ℕ is compact and ℇ(ℕ, X) is 

hausdorff. Thus, 𝛷 is onto mapping. 

b) From the definition above, the function 𝛷(𝓃)(𝓍) = 𝓃 ∙ 𝓍, which is a right 

continuous action of 𝛽ℕ  on 𝑋 is called an extended action. 

 

  The next lemma gives an equivalence of an isomorphism between the 

universal semi-group compactification on the Enfolding semi-group and the 

extending action to be effective. 

 

 

𝜓 𝛷 

 
ℕ ℇ(ℕ, 𝑋) 𝜑 
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Lemma 3.2.5: The homomorphism 𝛷: 𝛽ℕ → ℇ(ℕ, 𝑋) is a topological 

isomorphism if and only if the extension action is effective, i.e. if 𝒫 ≠ 𝓆 ∈ 𝛽ℕ, 

then there exists 𝓍 ∈ 𝑋 such that 𝒫 ∙ 𝓍 ≠ 𝓆 ∙ 𝓍. 

Proof:  

Suppose 𝛷 is a topological isomorphism then for all 𝒫 ≠ 𝓆, 𝛷(𝒫) ≠ 𝛷(𝓆) i.e. 

we have 𝛼(𝒫): 𝑋 → 𝑋 ≠ 𝛼(𝓆): 𝑋 → 𝑋, and this the meaning of a separating 

point. Thus, from extended action there exist 𝓍 ∈ 𝑋 such that 𝛷(𝒫)(𝓍) ≠

𝛷(𝓆)(𝓍), thus mean  𝒫 ∙ 𝓍 ≠ 𝓆 ∙ 𝓍. 

Conversely, suppose that the extension action is effective. Since the image of 

𝛽ℕ in ℇ(ℕ, 𝑋) is dense. Hence, by remark above, 𝛷 is surjective. Therefore, we 

have 𝛷 is continuous surjective homomorphism. 

Note that, the continuous map from compact space 𝑋 to 𝑇2-space is a closed map. 

Hence, 𝛷 is a closed map sine {a bijective map 𝑓: 𝑋 → 𝑌 is closed iff 𝑓−1: 𝑌 →

𝑋is continuous}. 

We need only to show 𝛷 is one to one, that is given immediately from hypothesis 

𝒫 ∙ 𝓍 ≠ 𝓆 ∙ 𝓍  for some  𝓍 ∈ 𝑋 and  𝒫, 𝓆 ∈ 𝛽ℕ. 

Note 3.2.6: In case ℱ is a left closed ideal in the universal compactification 𝛽ℕ. 

Then, from the previously works we did we can define a mapping 𝜑 ∶ ℕ →

ℇ(ℕ, ℱ) which is a semi-group compactification. Thus, there exists a continuous 

semi-group homomorphism 𝛷 : 𝛽ℕ → ℇ(ℕ, ℱ) such that 𝛷 ∘ 𝜓 = 𝜑, 

                                                            𝛽ℕ 

 

  

                                                                    

 

𝜓 𝛷 

 
ℕ ℇ(ℕ, ℱ) 𝜑 
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and the extended action of 𝛽ℕ on ℱ is (𝑘, 𝑙) = 𝑘 ∙ 𝑙,𝑘 ∈ ℕ, and 𝑙 ∈ ℱ. 

 

Corollary 3.2.7: Let 𝛽ℕ be the universal compactification of the semi-group ℕ 

and ℱ be a left closed ideal of 𝛽ℕ. If ℱ has a point 𝒫 which satisfies the right 

cancellation. Then the homomorphism 𝛷: 𝛽ℕ → ℇ(ℕ, ℱ) is a topological 

isomorphism. 

Proof:  

By lemma (3.2.5), if we can show the extended action is effective, we are done. 

Let 𝑠 ≠ 𝓉 where 𝑠, 𝓉 ∈ 𝛽ℕ. Then 𝑠 ∙ 𝒫 ≠ 𝓉 ∙ 𝒫, because otherwise if  𝑠 ∙ 𝒫 = 𝓉 ∙

𝒫   then by the right cancellation implies 𝑠 = 𝓉 which is a contradiction. Hence, 

𝛷(𝑠)(𝒫) ≠ 𝛷(𝓉)(𝒫).     

 

Lemma 3.2.8: Let 𝐾 be a topological semi-group and (𝐻, 𝛼) be a semi-group 

compactification of 𝐾, then there exist a left closed ideal ℱ of 𝐻 generating an 

𝐾-system such that (𝑘, 𝓉) → 𝛼(𝑘)𝓉: 𝐾 × ℱ → ℱ. 

Proof: 

First, for the existence of the left closed ideal. Since 𝐾 is a right topological semi-

group then by using Corollary (1.2.24) one can have a left closed left ideal ℱ. 

Note that, we have an action 𝛼: 𝐾 × 𝐻 → 𝐻, which is defined by (𝑘, 𝓉) → 𝑘 ∙ 𝓉 

that is continuous. Moreover, ℱ be a closed Hausdorff subset of a compact space 

𝐻. Also 𝛼 ∶ 𝐾 × ℱ → ℱ is continuous implies 𝛼|ℱ ∶ 𝐾 × ℱ → ℱ is continuous 

define by 𝛼(𝑘, 𝑙) = 𝑘 ∙ 𝑙 for each 𝑙 ∈ ℱ. Hence, we can define a 𝐾-system 

(𝐾, ℱ, 𝛼|ℱ ). 
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Theorem 3.2.9: Let ℱ be a left minimal ideal in a compact right-topological 

semi-group 𝛽ℕ and 𝑀(𝛽ℕ) it is the smallest ideal. Suppose 𝑠 ≠ 𝓉 ∈ 𝛽ℕ. Then 

the following are equivalent: 

a) There exists 𝓆 ∈ ℱ such that 𝑠 + 𝓆 ≠ 𝓉 + 𝓆. 

b) There exists an idempotent  𝑟 = 𝑟 + 𝑟 ∈ 𝐹 with 𝑠 + 𝑟 ≠ 𝓉 + 𝑟. 

c) There exists an idempotent  𝑒 ∈ 𝑀(𝛽ℕ) such that 𝑠 + 𝑒 ≠ 𝓉 + 𝑒. 

d) There is 𝓆 ∈ 𝑀(𝛽ℕ) such that 𝑠 + 𝓆 ≠ 𝓉 + 𝓆.  

Proof:  

From (a) to derived (b) by taking 𝓆 = 𝑟. 

From (b) → (c), immediately by taking 𝑟 = 𝑒.   

Similarly from (c) → (d) It deriving by taking 𝑒 = 𝓆. 

The implication (a) implies (d). Since 𝓆 ∈ ℱ, and ℱ is a minimal left ideal 

then 𝓆 ∈ 𝑀(𝛽ℕ) , and by hypothesis  𝑠 + 𝓆 ≠ 𝓉 + 𝓆. 

Now, assume (d) and derive (b): Recall the definition of the smallest 

ideal 𝑀(𝛽ℕ) =∪ { ℛ: ℛ is a minimal right ideal in 𝑀(𝛽ℕ), which implies 𝓆 ∈

ℛ for some minimal right ideal ℛ}. Also by Theorem (1.28) in [19] ℛ ∩ ℱ is a 

group and therefore contains an idempotent say 𝑟. 

But ℛ minimal right ideal, and then 𝑟 + ℛ = ℛ.  Hence 𝓆 = 𝑟 + 𝓃  for 

some  𝓃 ∈ ℛ.  

Thus 𝑟 + 𝓆 = 𝑟 + 𝑟 + 𝓃 = 𝑟 + 𝓃 = 𝓆. If  𝑠 + 𝑟 = 𝓉 + 𝑟 then 𝑠 + 𝓆 = 𝑠 +

𝑟 + 𝓆 = 𝓉 + 𝑟 + 𝓆 = 𝓉 + 𝓆 which is a contradiction. Therefore, 𝑠 + 𝑟 ≠ 𝓉 +

𝑟. 
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Definition 3.2.10: Let 𝑀 be the smallest ideal of the semi-group 𝐾. The semi-

group is a right 𝑴-stenography if given  𝑠 ≠ 𝓉 ∈ 𝐾 there is  𝓆 ∈ 𝑀 such 

that  𝑠𝓆 ≠ 𝓉𝓆.  

  Note that, the Theorem (3.2.9) gives another equivalence definition to the 

right 𝑀- stenography. 

 

Definition 3.2.11[1]  : The system (𝐾, 𝑋) is called a minimal system if the orbit 

𝐾𝓍 = {𝑘. 𝑥: 𝑘 ∈ 𝐾 } is dense in 𝑋 for every 𝓍 ∈ 𝑋.  

  

Definition 3.2.12: Let (𝐻, 𝛼) be a semi-group compactification of the 

topological semi-group 𝐾. Then the system (𝐾, ℱ) is a minimal system where 

ℱ is a left closed ideal of 𝐻 if and only if ℱ is a minimal left ideal of  𝐻.  

 

Theorem 3.2.13: For a topological semi-group (ℕ, +) and for (𝛽ℕ, 𝜑) be the 

universal semi-group compactification. The following are equivalent: 

a) The semi-group 𝛽ℕ is right 𝑀- stenography. 

b) If ℱ is a minimal left ideal of 𝛽ℕ, then the homomorphism for the minimal 

system (ℕ, ℱ) is an isomorphism, and therefore the Enfolding semi-group of this 

minimal system is topologically isomorphic to 𝛽ℕ. 

c) Given 𝒫,𝓆 ∈ 𝛽ℕ such that 𝒫 ≠ 𝓆, there exist a minimal system (ℕ, 𝑋) and 

𝓍 ∈ 𝑋 such that 𝒫 ∙ 𝓍 ≠ 𝓆 ∙ 𝓍 regarding to the extended action. 
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Proof:  

𝑎) ⟹ 𝑏): Let ℱ be a left minimal ideal of 𝛽ℕ. To show 𝛷: 𝛽ℕ ⟶ ℇ(ℕ, ℱ) is 

isomorphism. If we can show 𝛷 is effective then by lemma (3.2.5) we are done. 

Let 𝒫 ≠ 𝓆 ∈ 𝛽ℕ and since 𝛽ℕ  is right 𝑀-stenography then ∃ 𝓍 ∈ ℱ s.t 𝒫 ∙

𝓍 ≠ 𝓆 ∙ 𝓍. 

𝑏) ⟹ 𝑐): We have ℱ is a minimal left ideal in a compact right topology 𝛽ℕ. So 

by corollary (1.2.24) ℱ is closed. Then (ℕ, ℱ) is a minimal system by definition 

(3.2.12). But, we have 𝛷: 𝛽ℕ ⟶ ℇ(ℕ,ℱ) is isomorphism and so by lemma 

(3.2.5) the action is effective. 

𝑐) ⟹ 𝑎): Let 𝒫 ≠ 𝓆 ∈ 𝛽ℕ  and (ℕ, 𝑋) be a minimal system such that for some 

∈ 𝑋 , 𝒫 ∙ 𝓍 ≠ 𝓆 ∙ 𝓍. Let ℱ be a minimal left ideal in 𝛽ℕ implies ℱ is closed by 

corollary (1.2.24). Then ℱ ∙ 𝓍 ∈ 𝑋 is a closed since it is a continuous image of 

closed left ideal. Moreover, since ℕ(ℱ ∙ 𝓍) = (ℕ ∙ ℱ) ∙ 𝓍 = ℱ ∙ 𝓍 then ℱ ∙ 𝓍 is 

an invariant under ℕ. Hence, ℱ ∙ 𝓍 is Dense since (ℕ, 𝑋) is a minimal system. 

Thus, 𝓉 ∙ 𝓍 = 𝓍 for some 𝓉 ∈ ℱ. 

Therefore, 𝒫 ∙ 𝓉 = 𝓆 ∙ 𝓉 implies  𝒫 ∙ 𝓍 = 𝒫 ∙ 𝓉 ∙ 𝓍 = 𝓆 ∙ 𝓉 ∙ 𝓍 = 𝓆 ∙ 𝓍 which is 

a contradiction with our hypothesis. Hence  𝒫 ∙ 𝓉 ≠ 𝓆 ∙ 𝓉 and thus required also  

𝛽ℕ is a right 𝑀- stenography. 
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3.3 Splitting points of 𝜷ℕ in 𝑴(𝜷ℕ) 

  Let ℕ be a topological semi-group with universal semi-group 

compactification 𝛽ℕ. According to Theorems (3.2.13) and (3.2.9), we want to 

know that: given 𝒫 ≠ 𝓉 ∈ 𝛽ℕ, whether there is some 𝓆 ∈ 𝑀(𝛽ℕ), the smallest 

ideal of 𝛽ℕ, such that 𝒫𝓆 ≠ 𝓉𝓆. 

   

  The next two following definitions are in [7] and [9], but we will define 

them in the set of natural number ℕ. 

Definition 3.3.1[9]: Let (𝐾, 𝑋) be a system. A point 𝓍 ∈ 𝑋 is a uniformly 

recurrent point if given any neighbourhood 𝑉 of 𝓍, there is a finite compact 

subset 𝑀 of 𝐾 such that given 𝑘 ∈ 𝐾, there is 𝑚 ∈ 𝑀 with 𝑚𝑘𝓍 ∈ 𝑉. 

 

Definition 3.3.2: Let (𝐾, 𝑋) be a system. A point 𝓍 ∈ 𝑋 is an almost recurrent 

point if given any neighbourhood 𝑉 of 𝓍, there is a compact subset 𝑀 of 𝐾 such 

that given 𝑘 ∈ 𝐾, there exist 𝑚 ∈ 𝑀 with 𝑚𝑘𝓍 ∈ 𝑉. 

 

Remark 3.3.3: The uniformly recurrent points it will be exactly the points that 

are almost recurrent for the system (ℕ, 𝑋) when ℕ is given with the discrete 

topology. 

 

  The next theorem overlapping with studying the separable points of 𝛽ℕ in 

ℕ.  
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Theorem 3.3.4: Let (ℕ, 𝑋) be a system, 𝒫 ∈ 𝑋, and ℱ are minimal left ideals in 

the universal semi-group compactification 𝛽ℕ. The following are equivalent: 

a) The orbit closure ℒ(𝒫) contains 𝒫 and is a minimal ℕ-system. 

b) For the extended action of 𝛽ℕ on 𝑋, there is 𝑚 ∈ 𝑀,such that the smallest 

ideal in 𝛽ℕ, and 𝓍 ∈ 𝑋 such that 𝒫 = 𝑚 ∙ 𝓍. 

c) 𝒫 ∈ ℱ ∙ 𝒫. 

d) There is 𝑒 an idempotent 𝑒 ∈ ℱ such that 𝑒 ∙ 𝒫 = 𝒫. 

e)  ℒ(𝒫) = ℱ ∙ 𝒫. 

f) The point 𝒫 is an almost recurrent point. 

g) The point 𝒫 is an uniformly recurrent. 

 

Proof:  

  The equivalence of the first five parts can be used Theorem (2.38) in [19] 

by substitution ℕ and  𝛽ℕ. In addition equivalence (f) can be looked to Theorem 

(4.2) in [16]. The equivalence of (g) can get by taking ℕ with the discrete space. 

 

  In the following Theorem we consider 𝛽ℕ∗ = 𝛽ℕ ∪ {0} where {0} is the 

identity of the natural number (ℕ, +). 

Theorem 3.3.5: Let 𝛽ℕ be the universal compactification of the topological 

semi-group ℕ. Let 𝒫 ≠ 𝓉 ∈ 𝛽ℕ and ℱ be a minimal left ideal of 𝛽ℕ. The 

following statements are equivalent: 

a) There exist 𝓆 ∈ ℱ such that 𝒫𝓆 ≠ 𝓉𝓆. 

b) There is a system (ℕ, 𝑋) and an almost recurrent (or an uniformly recurrent) 

point 𝓍 ∈ 𝑋 such that 𝒫 ∙ 𝓍 ≠ 𝓉 ∙ 𝓍 for the extended action. 
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c) Let (ℕ, 𝑊) be any system for which the homomorphism from 𝛽ℕ ⟶

ℇ(ℕ, 𝑊) is an isomorphism. Then there is an almost recurrent (or uniformly 

recurrent) point 𝑤 ∈ 𝑊 such that 𝒫 ∙ 𝑤 ≠ 𝓉 ∙ 𝑤. 

Proof: 

a) => b): Since ℱ be a minimal left ideal of 𝛽ℕ then we can consider (ℕ, ℱ) be 

a minimal system. By hypothesis 𝒫𝓆 ≠ 𝓉𝓆 and ℱ is minimal this implies  

ℱ. 𝓆 = ℱ, so 𝓆 ∈ ℱ. 𝓆. Then by Theorem (3.3.4) part (f) and (g), implies 𝓆 is an 

uniformly recurrent and an almost recurrent point.  

b) => a): Let (ℕ, 𝑋) be a system, and let 𝓍 be an almost recurrent (or an uniformly 

recurrent) point in 𝑋 such that 𝒫 ∙ 𝓍 ≠ 𝓉 ∙ 𝓍. By Theorem (3.3.4), 𝓍 ∈ ℱ ∙ 𝓍. 

Hence, there exist 𝓆 ∈ ℱ such that 𝓍 = 𝓆 ∙ 𝓍.  

Then 𝒫𝓆 ∙ 𝓍 = 𝒫 ∙ 𝓆 ∙ 𝓍 

                     = 𝒫 ∙ 𝓍 

                     ≠ 𝓉 ∙ 𝓍 

                     = 𝓉 ∙ 𝓆 ∙ 𝓍 

                     = 𝓉𝓆 ∙ 𝓍 

Hence, 𝒫𝓆 ≠ 𝓉𝓆. 

a) => c): Let (ℕ, 𝑊) be a system for which the homomorphism is an 

isomorphism. By Lemma (3.2.5), there exist 𝑤 ∈ 𝑊 such that 𝒫 ∙ 𝓆 ∙ 𝑤 = 𝒫𝓆 ∙

𝑤 ≠ 𝓉𝓆 ∙ 𝑤 = 𝓉 ∙ 𝓆 ∙ 𝑤, and by Theorem (3.3.4) (since condition (b) holds 

implies (f) and ( g ) is hold) then point 𝓆 ∙ 𝑤 is an almost recurrent and an 

uniformly recurrent.  

 



 Chapter Three:                 Splitting points in βN by using minimal system 

                                                                                      48 
 

c) => a): Consider the system (ℕ, 𝛽ℕ∗ ) of the universal semi-group 

compactification (𝛽ℕ, 𝜓), where {0} is a discrete point added to 𝛽ℕ, and 𝓃 +

0 = 𝜓(𝓃) for all 𝓃 ∈ ℕ. The addition of 𝛽ℕ extends to 𝛽ℕ∗ by making {0} act 

as an identity of 𝛽ℕ, and 𝛽ℕ∗ keep it a right topological semi-group.  

Then for 𝒫 ≠ 𝓉 ∈ 𝛽ℕ, we have 𝒫 + 𝑜 = 𝒫 ≠ 𝓉 = 𝓉 + 𝑜. Hence, by Lemma 

(3.2.5), the homomorphism 𝛷: 𝛽ℕ ⟶ ℇ(ℕ, 𝛽ℕ∗ ) is an isomorphism. 

From hypothesis, there is an almost recurrent point 𝓆 in  𝛽ℕ∗ such that 𝒫𝓆 ≠

𝓉𝓆. Since ℱ is a minimal immediately by Theorem (3.3.4), 𝓆 ∈ ℱ𝓆. Thus, there 

is 𝓋 ∈ ℱ such that 𝓆 = 𝓋𝓆. Then 𝒫𝓋𝓆 =  𝒫𝓆 ≠ 𝓉𝓆 = 𝓉𝓋𝓆 , and so 𝒫𝓋 ≠

𝓉𝓋. 
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3.4 Application example of separating of  𝜷ℕ 

  In this section and for our objective we give an application for a specific 

example of a semi-group and its compactification with a particular system. We 

will introduce a specific subset example 𝑌 = {0,1 }ℕ defined with a shifting 

operator with a specific system. We will apply some facts we discussed in the 

previous section on a set 𝑌 and conclude some properties. 

 

Example 3.4.1:  Let 𝑌 = {0,1 }ℕ be the countable of product discrete space 

consisting from two-points. We can think about a set 𝑌 as: 𝑌 = { 𝜒 ∶ 𝑁 → {0,1}} 

where 𝜒 represented the characteristic function and each members 𝓍 of 𝑌 can be 

viewed as infinite tuples like 𝑥 = ( 𝜒(1), 𝜒(2), 𝜒(3), … ).  

Now define the shift operator 𝑇: 𝑌 ⟶  𝑌 by 𝑇(𝓍)(𝓃) = 𝜒(𝓃 +  1)where 𝓍 ∈

𝑌 is shifting a tuple to the left one place, ignoring the first entry.  

We consider the set of semi-groups of continuous functions {𝑇𝓃: 𝓃 ∈ ℕ}. Let 

𝜔 = ℇ({𝑇𝓃 ∶  𝓃 ∈  ℕ}, 𝑌) be the Enfolding semi-group set.  

Let 𝜑: ℕ ⟶  ℇ({𝑇𝓃 ∶  𝓃 ∈  ℕ}, 𝑌) by 𝜑(𝓃) = 𝑇𝓃, and the extension of 𝜑 

denote by 𝛷: 𝛽ℕ ⟶ ℇ({𝑇𝓃: 𝓃 ∈ 𝑁},𝑌) be a homomorphism. 

 

  The next theorem result is a modification of the result of reference [7]. 
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Theorem 3.4.2: The homomorphism  𝛷: 𝛽ℕ ⟶ 𝜔 =: ℇ({𝑇𝓃: 𝓃 ∈ ℕ}, 𝑌) is 

defined in the example above is a topological isomorphism. 

Proof:  

The essence of a proof of the theorem will be by using lemma )3.2.5(. Let 𝓆 ≠

𝒫 be two ultrafilters in 𝛽ℕ. Note that the points in ℕ are separated by 𝛷 since 

each 𝑛 gives a different  𝑇𝓃.  

Therefore, 𝛷 is separates points on ℕ and this show the separation of the case of 

a principle ultra-filter. For generality suppose without losing the generality 

assume that  𝓆 is a non-principal ultra-filter. Then there exists an infinite set 𝐵 ⊆

ℕ such that 𝐵 ∈ 𝓆 and since 𝓆 and 𝒫 are distinct then its complement 𝐵𝑐 ∈ 𝒫. 

Define the set 𝒞 = 𝐵 + 1, and let 𝓍 ∈ 𝑌 and 𝜒𝒞 be the characteristic function of 

𝒞. 

For each 𝓃 ∈ 𝐵, 𝛷(𝓃)(𝓍) = 𝑇𝓃(𝓍) and 𝑇𝓃(𝓍)(1) = 𝜒(𝓃 + 1) = 1 since 𝓃 +

1 ∈ 𝒞. But 𝐵 ∈ 𝓆  implies 𝓆 ∈ 𝐵 = 𝐵̂.  

Hence 𝓆 ∙ 𝓍(1) = (𝛷(𝓆)(𝓍))(1)  

                          = 𝑇𝓃(𝓍)(1) 

                          = 𝜒(𝓃 + 1) 

                          = 1  

Similarly if 𝓃 ∉ 𝐵, then 𝒫 ∙ 𝓍(1) = (𝛷(𝒫)(𝓍))(1) 

                                                       = 𝑇𝓃(𝓍)(1)  

                                                       = 𝜒(𝓃 + 1) = 0 

Thus 𝓆 ∙ 𝓍 ≠ 𝒫 ∙ 𝓍, and hence by Lemma (3.2.5) implies 𝛷 is topological 

isomorphism. 
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Remark 3.4.3: 

a) From above work a separable by appoint 𝓆 ∈ 𝛽ℕ means that for any two 

distinct element  𝒫, 𝓉 ∈ 𝛽ℕ then 𝒫 ∙ 𝓆 ≠ 𝓉 ∙ 𝓆, and this 𝓆 satisfy that for any 

other two distinct  element. 

b) By using Theorem (3.4.2) and (3.3.5) one can get a separable by a minimal 

left ideal ℱ but this required a one can find a uniformly recurrent point in 

𝛽ℕ.   

 

Remark 3.4.4: The uniformly recurrent points can also be represented as the 

characteristic functions 𝜒𝐴 on ℕ for some 𝐴 ⊆ ℕ, that are almost periodic 

functions. This because we can pick any basic neighbourhood and on that 

neighbourhood, we assume there is a compact set 𝐾 in that neighbourhood such 

that when we do translation with this characteristic functions on these points on 

𝐾 will get this neighbourhood.  

For example if 𝐴 = {4,8,16, … } ⊆ ℕ then 𝑦 = 𝜒𝐴 = (0,0,0,1,0,0,0,1, … ) and let 

𝑈 = {0} × {0} × {0} × {1} × 𝑌 × 𝑌 … be a basic neighborhood of 𝑦. Note that, 

with the almost periodic function then 

                                                                             𝑇(𝑦) ∉ 𝑈 

                                                                             𝑇2(𝑦) ∉ 𝑈 

                                                                             𝑇3(𝑦) ∉ 𝑈    

                                                                             𝑇4(𝑦) ∈ 𝑈   
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Lemma 3.4.5: Suppose 𝓆 ∈ 𝛽ℕ and  𝓍 ∈ 𝑌,  𝓃 ∈ ℕ. Then 𝛷(𝓆)(𝓍)(𝓃) = 1 if 

and only if 𝓍−1({1}) − 𝓃 ∈ 𝓆 such that 𝓍 = 𝜒𝐵 where 𝐵 = {𝑛 ∶ 𝜒(𝑛) = 1}. 

Proof:  

Let, 𝓆 ∈ 𝛽ℕ , 𝓍 ∈ 𝑌and 𝓃 ∈ ℕ i.e 𝓍 = {𝜒: ℕ ⟶ {0,1}} and so 𝓍 =

(𝜒(𝑛1), 𝜒(𝑛2) ,…). Suppose that 𝐵 = 𝓍−1[{1}] ⊆ ℕ and 𝑗 = 𝛷(𝓆)(𝓍)(𝓃) 

where 𝛷: 𝛽ℕ ⟶ 𝜔 =: ℇ({𝑇𝓃: 𝓃 ∈ ℕ}, 𝑌), note 𝛷(𝓆)(𝓍) ∈ 𝑌 = {𝜒: ℕ ⟶

{0,1}}, and 𝛷(𝓆)(𝓍)(𝓃) = 0 or 1, and let 𝑉 = {𝑦 ∈ 𝑌 ∶ 𝑦(𝓃)  = 𝑗}  be a 

neighborhood of  𝛷(𝓆)(𝓍). So that 𝑈 = {𝑓 ∈ ℇ ∶  𝑓(𝓍) ∈ 𝑉} is a neighborhood 

of 𝛷(𝓆).                            

                                                           𝛽ℕ 

 

                                                                    

 

Note that, from the diagram 𝛷(𝓆) ∈ 𝜔. 

Therefore, 𝛷(𝓆)(𝑥) ∈ 𝑉 from definition of 𝑉. Note that, the element in 𝜔 is set 

of continues functions 𝑓: 𝑌 ⟶ 𝑌 and the topologic define on 𝜔 will be the 

product topology so we have a function 𝑔: 𝜔 ⟶ 𝑌 is a continuous function since 

its just a projection map. Such that, the evaluation at 𝓍 we have 𝑔(𝑓) = 𝑓(𝓍) ∈

𝑌 since 𝑉 is a neighborhood of  𝛷(𝓆)(𝓍) and 𝑔−1(𝑉) = 𝑈 is a neighborhood of 

 𝛷(𝓆) since 𝑔 is continuous. Note that, 𝛷(𝓆) ∈ 𝑈 and 𝛷−1(𝑈) is an open set 

containing 𝓆. Hence, there exist a basic open set 𝐴̂ = 𝐴̅ such that 𝓆 ∈ 𝐴̂ ⊆

𝛷−1(𝑈). This leads to 𝓆 ∈ 𝐴̅ = 𝐴̂ is a basic neighborhood and since 𝛷 is a closed 

map then 𝛷(𝐴̅) = 𝛷(𝐴)̅̅ ̅̅ ̅̅ ̅ and since 𝑈 is a neighborhood of 𝛷(𝓆) so we have an 

open set 𝛷(𝐴̅) subset of 𝑈. Now pick 𝐴 ∈ 𝓆 such that 𝛷[𝐴̅] ⊆ 𝑈.  

𝜓 𝛷 

 
ℕ 𝜔 

𝜑 
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We claim if 𝑗 = 0 then 𝐴 ∩ (𝐵 − 𝓃) = ∅ this implies 𝐴 ∩ (𝐵 − 𝓃) ∉ 𝓆. Now, 

if 𝑗 = 1 then 𝐴 ⊆ 𝐵 − 𝓃 and since 𝐴 ∈ 𝓆 this implies 𝐵 − 𝓃 ∈ 𝓆.  

Let 𝑚 ∈ 𝐴 be given then 𝑇𝑚 = 𝛷(𝑚) ∈ 𝑈 since 𝛷[𝐴̅] ⊆ 𝑈. So that from 

definition of 𝑈 then 𝑇𝑚(𝓍) ∈ 𝑉 and 𝑇𝑚(𝓍)(𝓃) = 𝑗. That is 𝜒(𝑚 + 𝓃) = 𝑗. So 

if 𝑗 = 0 then 𝑚 + 𝓃 ∉ 𝐵. If 𝑗 = 1 then 𝑚 + 𝓃 ∈ 𝐵. 

 

The next two following statements Γ(𝐵) and Ω(𝐵) in the next remark both 

work to characterize our problem of uniformly recurrent on {0.1 }ℕ. 

Remark 3.4.6: Let 𝐵 ⊆  ℕ; we will use the following statements representing: 

a) Γ(𝐵) is the phrase that 𝜒𝐵 is the uniformly recurrent on {0.1 }ℕ. 

b) Ω(𝐵) is the phrase that there is a sequence {𝐴𝓃}𝓃=1
∞  of subsets of ℕ and a 

sequence {𝑚(𝓃)}𝓃=1 
∞ in ℕ such that 

i. (∪𝓃∈𝐵 𝐴𝓃 + 𝓃) ∩ ( ∪𝓃∈ℕ\𝐵 𝐴𝓃 + 𝓃) = ∅ 

ii. For every 𝓃 ∈  ℕ, ℕ = ∪𝓉=1
𝑚(𝓃)

(𝐴𝓃 − 𝓉), and 

iii. For every 𝓃 ∈  ℕ, 𝐴𝓃+1 ⊆ 𝐴𝓃. 

 

Lemma 3.4.7: Let 𝐵 ⊆ ℕ and if statement  Ω(𝐵) is hold then Γ(𝐵) is hold. 

Proof:  

From definition of Ω(𝐵), one can pick < 𝐴𝓃 >𝓃=1
∞  and < 𝑚(𝓃) >𝓃=1

∞ . Let 𝑦 =

𝜒𝐵 and let 𝑉 be a neighborhood of 𝑦 in 𝑌. We assume that we have some 𝑏 ∈ ℕ 

such that 𝑉 = {𝓍 ∈ 𝑌:for each 𝑗 ∈ {1,2,3, … , b},  𝓍(𝑗) = 𝑦(𝑗)}.  

i.e. for instance if 𝑦 = 𝜒𝐵 = (0,1,1,0,1,0,… ) and 𝑉 = {0} × {1} × {1} × 𝑌 ×

𝑌 ×∙∙∙ be a neighbourhood of 𝑦 and let 𝑏 = 3 
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𝑦1 = (0,1,1,1,1, … . ) 

𝑦2 = (0,1,1,0,0, … . )

𝑦3 = (0,1,1,1,0, … . )
     ∈ 𝑉  

We will show that it for every 𝑟 ∈ ℕ there exists 𝑑 ∈ {1, 2, 3,…, 𝑚(𝑏)} with 

𝑇𝑟+𝑑(𝑦) ∈ 𝑉. Let 𝑟 ∈ ℕ be given and let 𝑘 = 𝑟 + 𝑚(𝑏) + 𝑏. Pick some ℎ ∈ 𝐴𝑘. 

Now from the Remark above part (2), ℎ + 𝑟 ∈∪𝑑=1
𝑚(𝑏)

𝐴𝑏 − 𝑑 implies ℎ + 𝑟 ∈

𝐴𝑏 − 𝑑 for some 𝑑. So pick 𝑑 ∈ {1,2,3,….., 𝑚(𝑏)} with ℎ + 𝑟 + 𝑑 ∈ 𝐴𝑏. 

Suppose 𝑇𝑟+𝑑(𝑦) ∉ 𝑉 i.e. is not a recurrent point corresponding to 𝑑. So pick 

𝑗 ∈ {1,2,3,.…,𝑏} such that 𝑇𝑟+𝑑(𝑦)(𝑗) ≠ 𝑦(𝑗). Let 𝑎 = 𝑟 + 𝑑 + 𝑗. Since by 

definition 𝑇𝑟+𝑑(𝑦)(𝑗) = 𝑦(𝑟 + 𝑑 + 𝑗) then 𝑦(𝑗) ≠ 𝑦(𝑎) so either 𝑎 ∈

𝐵 and 𝑗 ∉ 𝐵 or 𝑎 ∉ 𝐵 and 𝑗 ∈ 𝐵.   

In both cases from the Remark above part (2) we have (𝐴𝑎 + 𝑎) ∩ (𝐴𝑗 + 𝑗) =

∅. But ℎ ∈ 𝐴𝑘 ⊆ 𝐴𝑎 (since 𝑎 ≤ 𝑘 and 𝑑 ≤ 𝑚(𝑏) and 𝑎 = 𝑟 + 𝑑 + 𝑗 ≤ 𝑘 = 𝑟 +

𝑚(𝑏) + 𝑏). Therefore ℎ + 𝑎 ∈ 𝐴𝑎 + 𝑎. Also ℎ + 𝑎 − 𝑗 = ℎ + 𝑟 + 𝑑 ∈ 𝐴𝑏 ⊆

𝐴𝑗 . Hence, ℎ + 𝑎 ∈ 𝐴𝑗 + 𝑗 is a contradiction since (𝐴𝑎 + 𝑎) ∩ (𝐴𝑗 + 𝑗) = ∅. 

 

Lemma 3.4.8: Let 𝐵 ⊆ ℕ and suppose Γ(𝐵) then Γ(𝐵 + 1) or Γ((𝐵 + 1) ∪ {1}) 

is hold. 

Proof:  

Let 𝓍 = 𝜒𝐵 be a uniformly recurrent, by the definition of Γ(𝐵) for each 𝓉 ∈ ℕ, 

let 𝑣𝓉 = {𝑦 ∈ 𝑌:for all 𝑗 ∈ {1,2,3, … , 𝓉}, 𝑦(𝑗) = 𝓍(𝑗)}.  

So we can have {∃𝓃 ∈ ℕ: 𝑇𝓃(𝑥) ∈ 𝑣𝓉} ≠ ∅. Thus we can pick ℓ(𝓉) ∈ ℕ such 

that 𝑇ℓ(𝓉)(𝑥) ∈ 𝑣𝓉. 
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Case (1): If {𝓉 ∈ ℕ: ℓ(𝓉) ∈ 𝐵} is infinite. Let 𝐴 = (𝐵 + 1) ∪ {1} to show Γ(𝐴) 

is hold. Let 𝑦 = 𝜒𝐴. And let 𝑢𝓉 = {𝑧 ∈ 𝑌: for all 𝑗 ∈ {1,2,3, … , 𝓉}, 𝑧(𝑗) = 𝑦(𝑗)} 

be the one of these 𝑣𝓉. Which we constructed from above which is a 

neighbourhood of 𝜒𝐵. Since we have infinite set, pick 𝓉 ` > 𝓉 such that ℓ(𝓉`) ∈

𝐵. Pick 𝑟 ∈ ℕ such that for all 𝓃 ∈ ℕ ∃ some 𝑑 ∈ {1,2,3, … , 𝑟} satisfies 

𝑇𝓃+𝑑(𝑥) ∈ 𝑣ℓ(𝓉`)+𝓉. To show that for all 𝓃 ∈ ℕ, some 𝑑 ∈ {1,2,3, … , 𝑟 +

ℓ(𝓉`)} has 𝑇𝓃+𝑑(𝑦) ∈ 𝑢𝓉.  

Let 𝓃 ∈ ℕ and take 𝑗 ∈ {1,2,3, … , 𝑟} such that 𝑇𝓃+𝑗(𝑥) ∈ 𝑣ℓ(𝓉`)+𝓉 from 

hypothesis. Let 𝑑 = 𝑗 + ℓ(𝓉`). Then 𝑑 ∈ {1,2,3, … , 𝑟 + ℓ(𝓉)}.  

We claim that 𝑇𝓃+𝑑(𝑦) ∈ 𝑢𝓉. To this end, let 𝑖 ∈ {1,2,3, … , 𝓉} be given. Assume 

𝑖 = 1 then 𝑦(𝑖) = 𝜒𝐴(1) = 1 since 1 ∈ 𝐴, and 𝑇𝓃+𝑑(𝑦)(𝑖) = 𝑦(𝓃 + 𝑑 + 1) 

                                                                    = 𝜒𝐴(𝓃 + 𝑑 + 1)  

                                                                              = 𝜒𝐵(𝓃 + 𝑑)          

                                                                              = 𝓍(𝓃 + 𝑑) 

                                                                              = 𝓍 (𝓃 + 𝑗 + ℓ(𝓉`)) 

Now 𝑇(𝓃+𝑗)(𝑥) ∈ 𝑣ℓ(𝓉`)+𝓉  , and so 𝑇(𝓃+𝑗)(𝑥) (ℓ(𝓉`)) = 𝓍 (ℓ(𝓉 `)) = 1 since 

ℓ(𝓉`) ∈ 𝐵. That is 𝑇𝓃+𝑑(𝑦)(𝑖) = 𝑦(𝑖).  

Now, assume 𝑖 ∈ {2,3, … , 𝓉}, then 𝑦(𝑖) = 𝓍(𝑖 − 1) = 𝜒𝐴(𝑖 − 1), and 

𝑇𝓃+𝑑(𝑦)(𝑖) = 𝑦(𝓃 + 𝑑 + 𝑖) 

                    = 𝓍(𝓃 + 𝑑 + 𝑖 − 1) 

                    = 𝓍(𝓃 + 𝑗 + ℓ(𝓉`) + 𝑖 − 1) 
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Again 𝑇𝓃+𝑗(𝓍) ∈ 𝑣ℓ(𝓉`)+𝓉 so, 𝑇𝓃+𝑗(𝓍)(ℓ(𝓉`) + 𝑖 − 1) = 𝓍(ℓ(𝓉`) + 𝑖 − 1). 

Since 𝑇ℓ(𝓉`)(𝓍) ∈ 𝑣𝓉`, then 𝓍(ℓ(𝓉`) + 𝑖 − 1) = 𝑇ℓ(𝓉`)(𝓍)(𝑖 − 1) = 𝓍(𝑖 − 1). 

Hence, 𝑇𝓃+𝑑(𝑦)(𝑖) = 𝑦(𝑖). 

Case (2): If {𝓉 ∈ ℕ: ℓ(𝓉) ∈ 𝐵} is finite. Then {𝓉 ∈ ℕ: ℓ(𝓉) ∉ 𝐵} is infinite. 

Assume 𝐴 = 𝐵 + 1 and the proof is similar as case (1). 
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شبه لمفهوم منطوي  ةالكامل تم من خلال عرض التعقيداتفي هذا العمل  المراد الهدف الرئيسي

لنظام في شبه الزمرة  في هيكل المنطوي الدراسةأن  ونرى. أصغرييمكن أن تظهر في نظام  الزمرة

طبيعة  للباحثين فيذات أهمية المشكلات في دراسة بعض جدير بالاهتمام  موضوعهو  الأصغري

تراص  شبه الفي فضاء   ℱ تمت دراسة المثاليات اليسارية الاصغرية. الزمرةشبه البحتة لالنظرية 

متماثل   ℱالزمرة  شبهلالمنطوي أن  تم البرهنة على. 𝐾 التبولوجيةزمرة اللشبه  𝛽𝐾الزمرة الشامل 

المثالي الاصغري في في  𝑝 فيمكن ايجاد عنصر،  βKفي  q ≠ rإذا وفقط إذا أعطيت  𝛽𝐾الشكل إلى 

𝑞  انيحقق   𝛽𝐾الفضاء ∙ 𝑝 ≠ 𝑟 ∙ 𝑝 . حول النظام نشتق العديد من الشروط ، بعضها تضمن

حالة  باستخدام هذه الشروط.  ومن خلال أخذ   𝑟 و 𝑞 النقاط القدرة على فصل والذي يمكننا  الاصغري

= 𝐾 شبة الزمرة يكون فيهاخاصة والتي  ℕ ، التراص هو وفضاء𝛽 ℕ بأخذ مجموعةتطبيقاً  تم اعطاء 

النظام  وتم دراسة مع نظام محدد بشروط متعددة لنظام تكراري من الدوال مكونة من عديدين  قابلة للعد

  .التي تمت دراستها بهذه الطريقة 𝑟 و 𝑞 النقاط فصل وكيفية  الادنى
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